Tianshou/examples/offline/d4rl_cql.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

374 lines
11 KiB
Python

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from examples.offline.utils import load_buffer_d4rl
from tianshou.data import Collector
from tianshou.env import SubprocVectorEnv
from tianshou.policy import CQLPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
type=str,
default="Hopper-v2",
help="The name of the OpenAI Gym environment to train on.",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="The random seed to use.",
)
parser.add_argument(
"--expert-data-task",
type=str,
default="hopper-expert-v2",
help="The name of the OpenAI Gym environment to use for expert data collection.",
)
parser.add_argument(
"--buffer-size",
type=int,
default=1000000,
help="The size of the replay buffer.",
)
parser.add_argument(
"--hidden-sizes",
type=int,
nargs="*",
default=[256, 256],
help="The list of hidden sizes for the neural networks.",
)
parser.add_argument(
"--actor-lr",
type=float,
default=1e-4,
help="The learning rate for the actor network.",
)
parser.add_argument(
"--critic-lr",
type=float,
default=3e-4,
help="The learning rate for the critic network.",
)
parser.add_argument(
"--alpha",
type=float,
default=0.2,
help="The weight of the entropy term in the loss function.",
)
parser.add_argument(
"--auto-alpha",
default=True,
action="store_true",
help="Whether to use automatic entropy tuning.",
)
parser.add_argument(
"--alpha-lr",
type=float,
default=1e-4,
help="The learning rate for the entropy tuning.",
)
parser.add_argument(
"--cql-alpha-lr",
type=float,
default=3e-4,
help="The learning rate for the CQL entropy tuning.",
)
parser.add_argument(
"--start-timesteps",
type=int,
default=10000,
help="The number of timesteps before starting to train.",
)
parser.add_argument(
"--epoch",
type=int,
default=200,
help="The number of epochs to train for.",
)
parser.add_argument(
"--step-per-epoch",
type=int,
default=5000,
help="The number of steps per epoch.",
)
parser.add_argument(
"--n-step",
type=int,
default=3,
help="The number of steps to use for N-step TD learning.",
)
parser.add_argument(
"--batch-size",
type=int,
default=256,
help="The batch size for training.",
)
parser.add_argument(
"--tau",
type=float,
default=0.005,
help="The soft target update coefficient.",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="The temperature for the Boltzmann policy.",
)
parser.add_argument(
"--cql-weight",
type=float,
default=1.0,
help="The weight of the CQL loss term.",
)
parser.add_argument(
"--with-lagrange",
type=bool,
default=True,
help="Whether to use the Lagrange multiplier for CQL.",
)
parser.add_argument(
"--calibrated",
type=bool,
default=True,
help="Whether to use calibration for CQL.",
)
parser.add_argument(
"--lagrange-threshold",
type=float,
default=10.0,
help="The Lagrange multiplier threshold for CQL.",
)
parser.add_argument("--gamma", type=float, default=0.99, help="The discount factor")
parser.add_argument(
"--eval-freq",
type=int,
default=1,
help="The frequency of evaluation.",
)
parser.add_argument(
"--test-num",
type=int,
default=10,
help="The number of episodes to evaluate for.",
)
parser.add_argument(
"--logdir",
type=str,
default="log",
help="The directory to save logs to.",
)
parser.add_argument(
"--render",
type=float,
default=1 / 35,
help="The frequency of rendering the environment.",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
help="The device to train on (cpu or cuda).",
)
parser.add_argument(
"--resume-path",
type=str,
default=None,
help="The path to the checkpoint to resume from.",
)
parser.add_argument(
"--resume-id",
type=str,
default=None,
help="The ID of the checkpoint to resume from.",
)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_cql():
args = get_args()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0] # float
print("device:", args.device)
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
args.state_dim = args.state_shape[0]
args.action_dim = args.action_shape[0]
print("Max_action", args.max_action)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# actor network
net_a = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = ActorProb(
net_a,
action_shape=args.action_shape,
device=args.device,
unbounded=True,
conditioned_sigma=True,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
# critic network
net_c1 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
net_c2 = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = Critic(net_c1, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = CQLPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
action_space=env.action_space,
critic2=critic2,
critic2_optim=critic2_optim,
calibrated=args.calibrated,
cql_alpha_lr=args.cql_alpha_lr,
cql_weight=args.cql_weight,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
temperature=args.temperature,
with_lagrange=args.with_lagrange,
lagrange_threshold=args.lagrange_threshold,
min_action=np.min(env.action_space.low),
max_action=np.max(env.action_space.high),
device=args.device,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "cql"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def watch():
if args.resume_path is None:
args.resume_path = os.path.join(log_path, "policy.pth")
policy.load_state_dict(torch.load(args.resume_path, map_location=torch.device("cpu")))
policy.eval()
collector = Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
if not args.watch:
replay_buffer = load_buffer_d4rl(args.expert_data_task)
# trainer
result = OfflineTrainer(
policy=policy,
buffer=replay_buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
).run()
pprint.pprint(result)
else:
watch()
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
if __name__ == "__main__":
test_cql()