Tianshou/test/discrete/test_a2c_with_il.py
Maximilian Huettenrauch 49c750fb09 update tests
2024-04-24 17:06:59 +02:00

216 lines
7.9 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic
try:
import envpool
except ImportError:
envpool = None
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--il-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--update-per-step", type=float, default=1 / 16)
parser.add_argument("--repeat-per-collect", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# a2c special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--max-grad-norm", type=float, default=None)
parser.add_argument("--gae-lambda", type=float, default=1.0)
parser.add_argument("--rew-norm", action="store_true", default=False)
return parser.parse_known_args()[0]
def test_a2c_with_il(args: argparse.Namespace = get_args()) -> None:
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if envpool is not None:
train_envs = env = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.training_num,
seed=args.seed,
)
test_envs = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.test_num,
seed=args.seed,
)
else:
env = gym.make(args.task)
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
train_envs.seed(args.seed)
test_envs.seed(args.seed)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v1": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# model
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy: BasePolicy
policy = A2CPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm,
reward_normalization=args.rew_norm,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
train_collector.reset()
test_collector = Collector(policy, test_envs)
test_collector.reset()
# log
log_path = os.path.join(args.logdir, args.task, "a2c")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
collector.reset()
collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True)
print(collector_stats)
# here we define an imitation collector with a trivial policy
# if args.task == 'CartPole-v1':
# env.spec.reward_threshold = 190 # lower the goal
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
optim = torch.optim.Adam(actor.parameters(), lr=args.il_lr)
il_policy: ImitationPolicy = ImitationPolicy(
actor=actor,
optim=optim,
action_space=env.action_space,
)
if envpool is not None:
il_env = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.test_num,
seed=args.seed,
)
else:
il_env = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
context="fork",
)
il_env.seed(args.seed)
il_test_collector = Collector(
il_policy,
il_env,
)
train_collector.reset()
result = OffpolicyTrainer(
policy=il_policy,
train_collector=train_collector,
test_collector=il_test_collector,
max_epoch=args.epoch,
step_per_epoch=args.il_step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(il_policy, env)
collector.reset()
collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True)
print(collector_stats)
if __name__ == "__main__":
test_a2c_with_il()