216 lines
7.9 KiB
Python
216 lines
7.9 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from gymnasium.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
|
|
from tianshou.policy import A2CPolicy, ImitationPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--il-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.9)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=50000)
|
|
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--episode-per-collect", type=int, default=16)
|
|
parser.add_argument("--step-per-collect", type=int, default=16)
|
|
parser.add_argument("--update-per-step", type=float, default=1 / 16)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
|
|
parser.add_argument("--training-num", type=int, default=16)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# a2c special
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--max-grad-norm", type=float, default=None)
|
|
parser.add_argument("--gae-lambda", type=float, default=1.0)
|
|
parser.add_argument("--rew-norm", action="store_true", default=False)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_a2c_with_il(args: argparse.Namespace = get_args()) -> None:
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
if envpool is not None:
|
|
train_envs = env = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.training_num,
|
|
seed=args.seed,
|
|
)
|
|
test_envs = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.test_num,
|
|
seed=args.seed,
|
|
)
|
|
else:
|
|
env = gym.make(args.task)
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 195}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy: BasePolicy
|
|
policy = A2CPolicy(
|
|
actor=actor,
|
|
critic=critic,
|
|
optim=optim,
|
|
dist_fn=dist,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
discount_factor=args.gamma,
|
|
gae_lambda=args.gae_lambda,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
max_grad_norm=args.max_grad_norm,
|
|
reward_normalization=args.rew_norm,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
train_collector.reset()
|
|
test_collector = Collector(policy, test_envs)
|
|
test_collector.reset()
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "a2c")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
episode_per_collect=args.episode_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
collector = Collector(policy, env)
|
|
collector.reset()
|
|
collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True)
|
|
print(collector_stats)
|
|
|
|
# here we define an imitation collector with a trivial policy
|
|
# if args.task == 'CartPole-v1':
|
|
# env.spec.reward_threshold = 190 # lower the goal
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(actor.parameters(), lr=args.il_lr)
|
|
il_policy: ImitationPolicy = ImitationPolicy(
|
|
actor=actor,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
)
|
|
if envpool is not None:
|
|
il_env = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.test_num,
|
|
seed=args.seed,
|
|
)
|
|
else:
|
|
il_env = SubprocVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
|
context="fork",
|
|
)
|
|
il_env.seed(args.seed)
|
|
|
|
il_test_collector = Collector(
|
|
il_policy,
|
|
il_env,
|
|
)
|
|
train_collector.reset()
|
|
result = OffpolicyTrainer(
|
|
policy=il_policy,
|
|
train_collector=train_collector,
|
|
test_collector=il_test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.il_step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
collector = Collector(il_policy, env)
|
|
collector.reset()
|
|
collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True)
|
|
print(collector_stats)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_a2c_with_il()
|