Tianshou/test/discrete/test_qrdqn.py
Maximilian Huettenrauch 49c750fb09 update tests
2024-04-24 17:06:59 +02:00

179 lines
6.7 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import QRDQNPolicy
from tianshou.policy.base import BasePolicy
from tianshou.policy.modelfree.qrdqn import QRDQNTrainingStats
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--num-quantiles", type=int, default=200)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=10000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128])
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--prioritized-replay", action="store_true", default=False)
parser.add_argument("--alpha", type=float, default=0.6)
parser.add_argument("--beta", type=float, default=0.4)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_known_args()[0]
def test_qrdqn(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
assert isinstance(env.action_space, gym.spaces.Discrete)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
if args.task == "CartPole-v1" and env.spec:
env.spec.reward_threshold = 190 # lower the goal
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v1": 195}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=False,
num_atoms=args.num_quantiles,
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy: QRDQNPolicy[QRDQNTrainingStats] = QRDQNPolicy(
model=net,
optim=optim,
action_space=env.action_space,
discount_factor=args.gamma,
num_quantiles=args.num_quantiles,
estimation_step=args.n_step,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
buf: PrioritizedVectorReplayBuffer | VectorReplayBuffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
alpha=args.alpha,
beta=args.beta,
)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.reset()
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, "qrdqn")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
def train_fn(epoch: int, env_step: int) -> None:
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(epoch: int, env_step: int | None) -> None:
policy.set_eps(args.eps_test)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
collector.reset()
collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True)
print(collector_stats)
def test_pqrdqn(args: argparse.Namespace = get_args()) -> None:
args.prioritized_replay = True
args.gamma = 0.95
test_qrdqn(args)
if __name__ == "__main__":
test_pqrdqn(get_args())