178 lines
6.8 KiB
Python
178 lines
6.8 KiB
Python
import argparse
|
|
import os
|
|
import pickle
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import QRDQNPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.policy.modelfree.qrdqn import QRDQNTrainingStats
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def expert_file_name() -> str:
|
|
return os.path.join(os.path.dirname(__file__), "expert_QRDQN_CartPole-v1.pkl")
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--eps-test", type=float, default=0.05)
|
|
parser.add_argument("--eps-train", type=float, default=0.1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.9)
|
|
parser.add_argument("--num-quantiles", type=int, default=200)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=320)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=10000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--prioritized-replay", action="store_true", default=False)
|
|
parser.add_argument("--alpha", type=float, default=0.6)
|
|
parser.add_argument("--beta", type=float, default=0.4)
|
|
parser.add_argument("--save-buffer-name", type=str, default=expert_file_name())
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def gather_data() -> VectorReplayBuffer | PrioritizedVectorReplayBuffer:
|
|
args = get_args()
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Discrete)
|
|
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 190}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
softmax=False,
|
|
num_atoms=args.num_quantiles,
|
|
)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
policy: QRDQNPolicy[QRDQNTrainingStats] = QRDQNPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
num_quantiles=args.num_quantiles,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
).to(args.device)
|
|
# buffer
|
|
buf: VectorReplayBuffer | PrioritizedVectorReplayBuffer
|
|
if args.prioritized_replay:
|
|
buf = PrioritizedVectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
alpha=args.alpha,
|
|
beta=args.beta,
|
|
)
|
|
else:
|
|
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
|
|
train_collector.reset()
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
test_collector.reset()
|
|
# policy.set_eps(1)
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "qrdqn")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
def train_fn(epoch: int, env_step: int) -> None:
|
|
# eps annnealing, just a demo
|
|
if env_step <= 10000:
|
|
policy.set_eps(args.eps_train)
|
|
elif env_step <= 50000:
|
|
eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
|
|
policy.set_eps(eps)
|
|
else:
|
|
policy.set_eps(0.1 * args.eps_train)
|
|
|
|
def test_fn(epoch: int, env_step: int | None) -> None:
|
|
policy.set_eps(args.eps_test)
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
# save buffer in pickle format, for imitation learning unittest
|
|
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs))
|
|
policy.set_eps(0.2)
|
|
collector = Collector(policy, test_envs, buf, exploration_noise=True)
|
|
collector.reset()
|
|
collector_stats = collector.collect(n_step=args.buffer_size, eval_mode=True)
|
|
if args.save_buffer_name.endswith(".hdf5"):
|
|
buf.save_hdf5(args.save_buffer_name)
|
|
else:
|
|
with open(args.save_buffer_name, "wb") as f:
|
|
pickle.dump(buf, f)
|
|
print(collector_stats)
|
|
return buf
|