This PR addresses #772 (updates Atari wrappers to work with new Gym API) and some additional issues: - Pre-commit was using gitlab for flake8, which as of recently requires authentication -> Replaced with GitHub - Yapf was quietly failing in pre-commit. Changed it such that it fixes formatting in-place - There is an incompatibility between flake8 and yapf where yapf puts binary operators after the line break and flake8 wants it before the break. I added an exception for flake8. - Also require `packaging` in setup.py My changes shouldn't change the behaviour of the wrappers for older versions, but please double check. Idk whether it's just me, but there are always some incompatibilities between yapf and flake8 that need to resolved manually. It might make sense to try black instead.
367 lines
12 KiB
Python
367 lines
12 KiB
Python
# Borrow a lot from openai baselines:
|
|
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
|
|
|
|
import warnings
|
|
from collections import deque
|
|
|
|
import cv2
|
|
import gym
|
|
import numpy as np
|
|
|
|
from tianshou.env import ShmemVectorEnv
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def _parse_reset_result(reset_result):
|
|
contains_info = (
|
|
isinstance(reset_result, tuple) and len(reset_result) == 2
|
|
and isinstance(reset_result[1], dict)
|
|
)
|
|
if contains_info:
|
|
return reset_result[0], reset_result[1], contains_info
|
|
return reset_result, {}, contains_info
|
|
|
|
|
|
class NoopResetEnv(gym.Wrapper):
|
|
"""Sample initial states by taking random number of no-ops on reset.
|
|
No-op is assumed to be action 0.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
:param int noop_max: the maximum value of no-ops to run.
|
|
"""
|
|
|
|
def __init__(self, env, noop_max=30):
|
|
super().__init__(env)
|
|
self.noop_max = noop_max
|
|
self.noop_action = 0
|
|
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
|
|
|
|
def reset(self, **kwargs):
|
|
_, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
|
|
if hasattr(self.unwrapped.np_random, "integers"):
|
|
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
|
|
else:
|
|
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
|
|
for _ in range(noops):
|
|
step_result = self.env.step(self.noop_action)
|
|
if len(step_result) == 4:
|
|
obs, rew, done, info = step_result
|
|
else:
|
|
obs, rew, term, trunc, info = step_result
|
|
done = term or trunc
|
|
if done:
|
|
obs, info, _ = _parse_reset_result(self.env.reset())
|
|
if return_info:
|
|
return obs, info
|
|
return obs
|
|
|
|
|
|
class MaxAndSkipEnv(gym.Wrapper):
|
|
"""Return only every `skip`-th frame (frameskipping) using most recent raw
|
|
observations (for max pooling across time steps)
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
:param int skip: number of `skip`-th frame.
|
|
"""
|
|
|
|
def __init__(self, env, skip=4):
|
|
super().__init__(env)
|
|
self._skip = skip
|
|
|
|
def step(self, action):
|
|
"""Step the environment with the given action. Repeat action, sum
|
|
reward, and max over last observations.
|
|
"""
|
|
obs_list, total_reward = [], 0.
|
|
new_step_api = False
|
|
for _ in range(self._skip):
|
|
step_result = self.env.step(action)
|
|
if len(step_result) == 4:
|
|
obs, reward, done, info = step_result
|
|
else:
|
|
obs, reward, term, trunc, info = step_result
|
|
done = term or trunc
|
|
new_step_api = True
|
|
obs_list.append(obs)
|
|
total_reward += reward
|
|
if done:
|
|
break
|
|
max_frame = np.max(obs_list[-2:], axis=0)
|
|
if new_step_api:
|
|
return max_frame, total_reward, term, trunc, info
|
|
|
|
return max_frame, total_reward, done, info
|
|
|
|
|
|
class EpisodicLifeEnv(gym.Wrapper):
|
|
"""Make end-of-life == end-of-episode, but only reset on true game over. It
|
|
helps the value estimation.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env)
|
|
self.lives = 0
|
|
self.was_real_done = True
|
|
self._return_info = False
|
|
|
|
def step(self, action):
|
|
step_result = self.env.step(action)
|
|
if len(step_result) == 4:
|
|
obs, reward, done, info = step_result
|
|
new_step_api = False
|
|
else:
|
|
obs, reward, term, trunc, info = step_result
|
|
done = term or trunc
|
|
new_step_api = True
|
|
|
|
self.was_real_done = done
|
|
# check current lives, make loss of life terminal, then update lives to
|
|
# handle bonus lives
|
|
lives = self.env.unwrapped.ale.lives()
|
|
if 0 < lives < self.lives:
|
|
# for Qbert sometimes we stay in lives == 0 condition for a few
|
|
# frames, so its important to keep lives > 0, so that we only reset
|
|
# once the environment is actually done.
|
|
done = True
|
|
term = True
|
|
self.lives = lives
|
|
if new_step_api:
|
|
return obs, reward, term, trunc, info
|
|
return obs, reward, done, info
|
|
|
|
def reset(self):
|
|
"""Calls the Gym environment reset, only when lives are exhausted. This
|
|
way all states are still reachable even though lives are episodic, and
|
|
the learner need not know about any of this behind-the-scenes.
|
|
"""
|
|
if self.was_real_done:
|
|
obs, info, self._return_info = _parse_reset_result(self.env.reset())
|
|
else:
|
|
# no-op step to advance from terminal/lost life state
|
|
step_result = self.env.step(0)
|
|
obs, info = step_result[0], step_result[-1]
|
|
self.lives = self.env.unwrapped.ale.lives()
|
|
if self._return_info:
|
|
return obs, info
|
|
else:
|
|
return obs
|
|
|
|
|
|
class FireResetEnv(gym.Wrapper):
|
|
"""Take action on reset for environments that are fixed until firing.
|
|
Related discussion: https://github.com/openai/baselines/issues/240
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env)
|
|
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
|
|
assert len(env.unwrapped.get_action_meanings()) >= 3
|
|
|
|
def reset(self):
|
|
_, _, return_info = _parse_reset_result(self.env.reset())
|
|
obs = self.env.step(1)[0]
|
|
return (obs, {}) if return_info else obs
|
|
|
|
|
|
class WarpFrame(gym.ObservationWrapper):
|
|
"""Warp frames to 84x84 as done in the Nature paper and later work.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env)
|
|
self.size = 84
|
|
self.observation_space = gym.spaces.Box(
|
|
low=np.min(env.observation_space.low),
|
|
high=np.max(env.observation_space.high),
|
|
shape=(self.size, self.size),
|
|
dtype=env.observation_space.dtype
|
|
)
|
|
|
|
def observation(self, frame):
|
|
"""returns the current observation from a frame"""
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
|
return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA)
|
|
|
|
|
|
class ScaledFloatFrame(gym.ObservationWrapper):
|
|
"""Normalize observations to 0~1.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env)
|
|
low = np.min(env.observation_space.low)
|
|
high = np.max(env.observation_space.high)
|
|
self.bias = low
|
|
self.scale = high - low
|
|
self.observation_space = gym.spaces.Box(
|
|
low=0., high=1., shape=env.observation_space.shape, dtype=np.float32
|
|
)
|
|
|
|
def observation(self, observation):
|
|
return (observation - self.bias) / self.scale
|
|
|
|
|
|
class ClipRewardEnv(gym.RewardWrapper):
|
|
"""clips the reward to {+1, 0, -1} by its sign.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super().__init__(env)
|
|
self.reward_range = (-1, 1)
|
|
|
|
def reward(self, reward):
|
|
"""Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0."""
|
|
return np.sign(reward)
|
|
|
|
|
|
class FrameStack(gym.Wrapper):
|
|
"""Stack n_frames last frames.
|
|
|
|
:param gym.Env env: the environment to wrap.
|
|
:param int n_frames: the number of frames to stack.
|
|
"""
|
|
|
|
def __init__(self, env, n_frames):
|
|
super().__init__(env)
|
|
self.n_frames = n_frames
|
|
self.frames = deque([], maxlen=n_frames)
|
|
shape = (n_frames, ) + env.observation_space.shape
|
|
self.observation_space = gym.spaces.Box(
|
|
low=np.min(env.observation_space.low),
|
|
high=np.max(env.observation_space.high),
|
|
shape=shape,
|
|
dtype=env.observation_space.dtype
|
|
)
|
|
|
|
def reset(self):
|
|
obs, info, return_info = _parse_reset_result(self.env.reset())
|
|
for _ in range(self.n_frames):
|
|
self.frames.append(obs)
|
|
return (self._get_ob(), info) if return_info else self._get_ob()
|
|
|
|
def step(self, action):
|
|
step_result = self.env.step(action)
|
|
if len(step_result) == 4:
|
|
obs, reward, done, info = step_result
|
|
new_step_api = False
|
|
else:
|
|
obs, reward, term, trunc, info = step_result
|
|
new_step_api = True
|
|
self.frames.append(obs)
|
|
if new_step_api:
|
|
return self._get_ob(), reward, term, trunc, info
|
|
return self._get_ob(), reward, done, info
|
|
|
|
def _get_ob(self):
|
|
# the original wrapper use `LazyFrames` but since we use np buffer,
|
|
# it has no effect
|
|
return np.stack(self.frames, axis=0)
|
|
|
|
|
|
def wrap_deepmind(
|
|
env_id,
|
|
episode_life=True,
|
|
clip_rewards=True,
|
|
frame_stack=4,
|
|
scale=False,
|
|
warp_frame=True
|
|
):
|
|
"""Configure environment for DeepMind-style Atari. The observation is
|
|
channel-first: (c, h, w) instead of (h, w, c).
|
|
|
|
:param str env_id: the atari environment id.
|
|
:param bool episode_life: wrap the episode life wrapper.
|
|
:param bool clip_rewards: wrap the reward clipping wrapper.
|
|
:param int frame_stack: wrap the frame stacking wrapper.
|
|
:param bool scale: wrap the scaling observation wrapper.
|
|
:param bool warp_frame: wrap the grayscale + resize observation wrapper.
|
|
:return: the wrapped atari environment.
|
|
"""
|
|
assert 'NoFrameskip' in env_id
|
|
env = gym.make(env_id)
|
|
env = NoopResetEnv(env, noop_max=30)
|
|
env = MaxAndSkipEnv(env, skip=4)
|
|
if episode_life:
|
|
env = EpisodicLifeEnv(env)
|
|
if 'FIRE' in env.unwrapped.get_action_meanings():
|
|
env = FireResetEnv(env)
|
|
if warp_frame:
|
|
env = WarpFrame(env)
|
|
if scale:
|
|
env = ScaledFloatFrame(env)
|
|
if clip_rewards:
|
|
env = ClipRewardEnv(env)
|
|
if frame_stack:
|
|
env = FrameStack(env, frame_stack)
|
|
return env
|
|
|
|
|
|
def make_atari_env(task, seed, training_num, test_num, **kwargs):
|
|
"""Wrapper function for Atari env.
|
|
|
|
If EnvPool is installed, it will automatically switch to EnvPool's Atari env.
|
|
|
|
:return: a tuple of (single env, training envs, test envs).
|
|
"""
|
|
if envpool is not None:
|
|
if kwargs.get("scale", 0):
|
|
warnings.warn(
|
|
"EnvPool does not include ScaledFloatFrame wrapper, "
|
|
"please set `x = x / 255.0` inside CNN network's forward function."
|
|
)
|
|
# parameters convertion
|
|
train_envs = env = envpool.make_gym(
|
|
task.replace("NoFrameskip-v4", "-v5"),
|
|
num_envs=training_num,
|
|
seed=seed,
|
|
episodic_life=True,
|
|
reward_clip=True,
|
|
stack_num=kwargs.get("frame_stack", 4),
|
|
)
|
|
test_envs = envpool.make_gym(
|
|
task.replace("NoFrameskip-v4", "-v5"),
|
|
num_envs=test_num,
|
|
seed=seed,
|
|
episodic_life=False,
|
|
reward_clip=False,
|
|
stack_num=kwargs.get("frame_stack", 4),
|
|
)
|
|
else:
|
|
warnings.warn(
|
|
"Recommend using envpool (pip install envpool) "
|
|
"to run Atari games more efficiently."
|
|
)
|
|
env = wrap_deepmind(task, **kwargs)
|
|
train_envs = ShmemVectorEnv(
|
|
[
|
|
lambda:
|
|
wrap_deepmind(task, episode_life=True, clip_rewards=True, **kwargs)
|
|
for _ in range(training_num)
|
|
]
|
|
)
|
|
test_envs = ShmemVectorEnv(
|
|
[
|
|
lambda:
|
|
wrap_deepmind(task, episode_life=False, clip_rewards=False, **kwargs)
|
|
for _ in range(test_num)
|
|
]
|
|
)
|
|
env.seed(seed)
|
|
train_envs.seed(seed)
|
|
test_envs.seed(seed)
|
|
return env, train_envs, test_envs
|