Tianshou/test/continuous/test_ddpg.py
Oblivion 4d4d0daf9e
Performance improve (#18)
* improve performance

set one thread for NN
replace detach() op with torch.no_grad()

* fix pep 8 errors
2020-04-05 09:10:21 +08:00

113 lines
4.3 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import VectorEnv
from tianshou.policy import DDPGPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Actor, Critic
else: # pytest
from test.continuous.net import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--run-id', type=str, default='test')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_ddpg(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,
args.tau, args.gamma, args.exploration_noise,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=True, ignore_done=True)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'ddpg', args.run_id)
writer = SummaryWriter(log_path)
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_ddpg()