Tianshou/test/discrete/test_fqf.py
bordeauxred 4f65b131aa
Feat/refactor collector (#1063)
Closes: #1058 

### Api Extensions
- Batch received two new methods: `to_dict` and `to_list_of_dicts`.
#1063
- `Collector`s can now be closed, and their reset is more granular.
#1063
- Trainers can control whether collectors should be reset prior to
training. #1063
- Convenience constructor for `CollectStats` called
`with_autogenerated_stats`. #1063

### Internal Improvements
- `Collector`s rely less on state, the few stateful things are stored
explicitly instead of through a `.data` attribute. #1063
- Introduced a first iteration of a naming convention for vars in
`Collector`s. #1063
- Generally improved readability of Collector code and associated tests
(still quite some way to go). #1063
- Improved typing for `exploration_noise` and within Collector. #1063

### Breaking Changes

- Removed `.data` attribute from `Collector` and its child classes.
#1063
- Collectors no longer reset the environment on initialization. Instead,
the user might have to call `reset`
expicitly or pass `reset_before_collect=True` . #1063
- VectorEnvs now return an array of info-dicts on reset instead of a
list. #1063
- Fixed `iter(Batch(...)` which now behaves the same way as
`Batch(...).__iter__()`. Can be considered a bugfix. #1063

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-03-28 18:02:31 +01:00

194 lines
7.2 KiB
Python

import argparse
import os
import pprint
from typing import cast
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import (
Collector,
PrioritizedVectorReplayBuffer,
ReplayBuffer,
VectorReplayBuffer,
)
from tianshou.env import DummyVectorEnv
from tianshou.policy import FQFPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.discrete import FractionProposalNetwork, FullQuantileFunction
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=3e-3)
parser.add_argument("--fraction-lr", type=float, default=2.5e-9)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--num-fractions", type=int, default=32)
parser.add_argument("--num-cosines", type=int, default=64)
parser.add_argument("--ent-coef", type=float, default=10.0)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=10000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64, 64])
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--prioritized-replay", action="store_true", default=False)
parser.add_argument("--alpha", type=float, default=0.6)
parser.add_argument("--beta", type=float, default=0.4)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_known_args()[0]
def test_fqf(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
space_info = SpaceInfo.from_env(env)
env.action_space = cast(gym.spaces.Discrete, env.action_space)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
feature_net = Net(
args.state_shape,
args.hidden_sizes[-1],
hidden_sizes=args.hidden_sizes[:-1],
device=args.device,
softmax=False,
)
net = FullQuantileFunction(
feature_net,
args.action_shape,
args.hidden_sizes,
num_cosines=args.num_cosines,
device=args.device,
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
fraction_net = FractionProposalNetwork(args.num_fractions, net.input_dim)
fraction_optim = torch.optim.RMSprop(fraction_net.parameters(), lr=args.fraction_lr)
policy: BasePolicy = FQFPolicy(
model=net,
optim=optim,
fraction_model=fraction_net,
fraction_optim=fraction_optim,
action_space=env.action_space,
discount_factor=args.gamma,
num_fractions=args.num_fractions,
ent_coef=args.ent_coef,
estimation_step=args.n_step,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
buf: ReplayBuffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
alpha=args.alpha,
beta=args.beta,
)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num, reset_before_collect=True)
# log
log_path = os.path.join(args.logdir, args.task, "fqf")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
def train_fn(epoch: int, env_step: int) -> None:
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(epoch: int, env_step: int | None) -> None:
policy.set_eps(args.eps_test)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
def test_pfqf(args: argparse.Namespace = get_args()) -> None:
args.prioritized_replay = True
args.gamma = 0.95
test_fqf(args)
if __name__ == "__main__":
test_fqf(get_args())