Tianshou/test/modelbased/test_psrl.py
bordeauxred 4f65b131aa
Feat/refactor collector (#1063)
Closes: #1058 

### Api Extensions
- Batch received two new methods: `to_dict` and `to_list_of_dicts`.
#1063
- `Collector`s can now be closed, and their reset is more granular.
#1063
- Trainers can control whether collectors should be reset prior to
training. #1063
- Convenience constructor for `CollectStats` called
`with_autogenerated_stats`. #1063

### Internal Improvements
- `Collector`s rely less on state, the few stateful things are stored
explicitly instead of through a `.data` attribute. #1063
- Introduced a first iteration of a naming convention for vars in
`Collector`s. #1063
- Generally improved readability of Collector code and associated tests
(still quite some way to go). #1063
- Improved typing for `exploration_noise` and within Collector. #1063

### Breaking Changes

- Removed `.data` attribute from `Collector` and its child classes.
#1063
- Collectors no longer reset the environment on initialization. Instead,
the user might have to call `reset`
expicitly or pass `reset_before_collect=True` . #1063
- VectorEnvs now return an array of info-dicts on reset instead of a
list. #1063
- Fixed `iter(Batch(...)` which now behaves the same way as
`Batch(...).__iter__()`. Can be considered a bugfix. #1063

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-03-28 18:02:31 +01:00

133 lines
5.0 KiB
Python

import argparse
import os
import pprint
import numpy as np
import pytest
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import PSRLPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
try:
import envpool
except ImportError:
envpool = None
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="NChain-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=50000)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=1)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--rew-mean-prior", type=float, default=0.0)
parser.add_argument("--rew-std-prior", type=float, default=1.0)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eps", type=float, default=0.01)
parser.add_argument("--add-done-loop", action="store_true", default=False)
parser.add_argument(
"--logger",
type=str,
default="none", # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
choices=["wandb", "tensorboard", "none"],
)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_psrl(args: argparse.Namespace = get_args()) -> None:
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
if args.reward_threshold is None:
default_reward_threshold = {"NChain-v0": 3400}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
print("reward threshold:", args.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy: PSRLPolicy = PSRLPolicy(
trans_count_prior=trans_count_prior,
rew_mean_prior=rew_mean_prior,
rew_std_prior=rew_std_prior,
action_space=env.action_space,
discount_factor=args.gamma,
epsilon=args.eps,
add_done_loop=args.add_done_loop,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
train_collector.reset()
test_collector = Collector(policy, test_envs)
test_collector.reset()
# Logger
log_path = os.path.join(args.logdir, args.task, "psrl")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger: WandbLogger | TensorboardLogger | LazyLogger
if args.logger == "wandb":
logger = WandbLogger(save_interval=1, project="psrl", name="wandb_test", config=args)
logger.load(writer)
elif args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else:
logger = LazyLogger()
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer, test it without logger
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=1,
episode_per_test=args.test_num,
batch_size=0,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
logger=logger,
test_in_train=False,
).run()
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result.rew_mean}, length: {result.len_mean}")
elif env.spec.reward_threshold:
assert result.best_reward >= env.spec.reward_threshold
if __name__ == "__main__":
test_psrl()