Tianshou/examples/mujoco/fetch_her_ddpg.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

233 lines
8.3 KiB
Python

#!/usr/bin/env python3
# isort: skip_file
import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
import wandb
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import (
Collector,
HERReplayBuffer,
HERVectorReplayBuffer,
ReplayBuffer,
VectorReplayBuffer,
)
from tianshou.env import ShmemVectorEnv, TruncatedAsTerminated
from tianshou.exploration import GaussianNoise
from tianshou.policy import DDPGPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net, get_dict_state_decorator
from tianshou.utils.net.continuous import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="FetchReach-v3")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=3e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--start-timesteps", type=int, default=25000)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=5000)
parser.add_argument("--step-per-collect", type=int, default=1)
parser.add_argument("--update-per-step", type=int, default=1)
parser.add_argument("--n-step", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=512)
parser.add_argument("--replay-buffer", type=str, default="her", choices=["normal", "her"])
parser.add_argument("--her-horizon", type=int, default=50)
parser.add_argument("--her-future-k", type=int, default=8)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="HER-benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def make_fetch_env(task, training_num, test_num):
env = TruncatedAsTerminated(gym.make(task))
train_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(training_num)],
)
test_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(test_num)],
)
return env, train_envs, test_envs
def test_ddpg(args=get_args()):
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ddpg"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
logger.wandb_run.config.setdefaults(vars(args))
args = argparse.Namespace(**wandb.config)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
env, train_envs, test_envs = make_fetch_env(args.task, args.training_num, args.test_num)
args.state_shape = {
"observation": env.observation_space["observation"].shape,
"achieved_goal": env.observation_space["achieved_goal"].shape,
"desired_goal": env.observation_space["desired_goal"].shape,
}
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
args.exploration_noise = args.exploration_noise * args.max_action
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
dict_state_dec, flat_state_shape = get_dict_state_decorator(
state_shape=args.state_shape,
keys=["observation", "achieved_goal", "desired_goal"],
)
net_a = dict_state_dec(Net)(
flat_state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = dict_state_dec(Actor)(
net_a,
args.action_shape,
max_action=args.max_action,
device=args.device,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c = dict_state_dec(Net)(
flat_state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = dict_state_dec(Critic)(net_c, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
def compute_reward_fn(ag: np.ndarray, g: np.ndarray):
return env.compute_reward(ag, g, {})
if args.replay_buffer == "normal":
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
else:
if args.training_num > 1:
buffer = HERVectorReplayBuffer(
args.buffer_size,
len(train_envs),
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
else:
buffer = HERReplayBuffer(
args.buffer_size,
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
).run()
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
if __name__ == "__main__":
test_ddpg()