This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
292 lines
10 KiB
Python
292 lines
10 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pprint
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from env import make_vizdoom_env
|
|
from network import DQN
|
|
from torch.optim.lr_scheduler import LambdaLR
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.policy import ICMPolicy, PPOPolicy
|
|
from tianshou.trainer import OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger, WandbLogger
|
|
from tianshou.utils.net.common import ActorCritic
|
|
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="D1_basic")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--buffer-size", type=int, default=100000)
|
|
parser.add_argument("--lr", type=float, default=0.00002)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--epoch", type=int, default=300)
|
|
parser.add_argument("--step-per-epoch", type=int, default=100000)
|
|
parser.add_argument("--step-per-collect", type=int, default=1000)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=4)
|
|
parser.add_argument("--batch-size", type=int, default=256)
|
|
parser.add_argument("--hidden-size", type=int, default=512)
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--rew-norm", type=int, default=False)
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.01)
|
|
parser.add_argument("--gae-lambda", type=float, default=0.95)
|
|
parser.add_argument("--lr-decay", type=int, default=True)
|
|
parser.add_argument("--max-grad-norm", type=float, default=0.5)
|
|
parser.add_argument("--eps-clip", type=float, default=0.2)
|
|
parser.add_argument("--dual-clip", type=float, default=None)
|
|
parser.add_argument("--value-clip", type=int, default=0)
|
|
parser.add_argument("--norm-adv", type=int, default=1)
|
|
parser.add_argument("--recompute-adv", type=int, default=0)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--frames-stack", type=int, default=4)
|
|
parser.add_argument("--skip-num", type=int, default=4)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument("--resume-id", type=str, default=None)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
)
|
|
parser.add_argument("--wandb-project", type=str, default="vizdoom.benchmark")
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument(
|
|
"--save-lmp",
|
|
default=False,
|
|
action="store_true",
|
|
help="save lmp file for replay whole episode",
|
|
)
|
|
parser.add_argument("--save-buffer-name", type=str, default=None)
|
|
parser.add_argument(
|
|
"--icm-lr-scale",
|
|
type=float,
|
|
default=0.0,
|
|
help="use intrinsic curiosity module with this lr scale",
|
|
)
|
|
parser.add_argument(
|
|
"--icm-reward-scale",
|
|
type=float,
|
|
default=0.01,
|
|
help="scaling factor for intrinsic curiosity reward",
|
|
)
|
|
parser.add_argument(
|
|
"--icm-forward-loss-weight",
|
|
type=float,
|
|
default=0.2,
|
|
help="weight for the forward model loss in ICM",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def test_ppo(args=get_args()):
|
|
# make environments
|
|
env, train_envs, test_envs = make_vizdoom_env(
|
|
args.task,
|
|
args.skip_num,
|
|
(args.frames_stack, 84, 84),
|
|
args.save_lmp,
|
|
args.seed,
|
|
args.training_num,
|
|
args.test_num,
|
|
)
|
|
args.state_shape = env.observation_space.shape
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# should be N_FRAMES x H x W
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# define model
|
|
net = DQN(
|
|
*args.state_shape,
|
|
args.action_shape,
|
|
device=args.device,
|
|
features_only=True,
|
|
output_dim=args.hidden_size,
|
|
)
|
|
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
|
|
critic = Critic(net, device=args.device)
|
|
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
|
|
|
|
lr_scheduler = None
|
|
if args.lr_decay:
|
|
# decay learning rate to 0 linearly
|
|
max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
|
|
|
|
lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
|
|
|
|
# define policy
|
|
def dist(p):
|
|
return torch.distributions.Categorical(logits=p)
|
|
|
|
policy = PPOPolicy(
|
|
actor=actor,
|
|
critic=critic,
|
|
optim=optim,
|
|
dist_fn=dist,
|
|
discount_factor=args.gamma,
|
|
gae_lambda=args.gae_lambda,
|
|
max_grad_norm=args.max_grad_norm,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
reward_normalization=args.rew_norm,
|
|
action_scaling=False,
|
|
lr_scheduler=lr_scheduler,
|
|
action_space=env.action_space,
|
|
eps_clip=args.eps_clip,
|
|
value_clip=args.value_clip,
|
|
dual_clip=args.dual_clip,
|
|
advantage_normalization=args.norm_adv,
|
|
recompute_advantage=args.recompute_adv,
|
|
).to(args.device)
|
|
if args.icm_lr_scale > 0:
|
|
feature_net = DQN(
|
|
*args.state_shape,
|
|
args.action_shape,
|
|
device=args.device,
|
|
features_only=True,
|
|
output_dim=args.hidden_size,
|
|
)
|
|
action_dim = np.prod(args.action_shape)
|
|
feature_dim = feature_net.output_dim
|
|
icm_net = IntrinsicCuriosityModule(
|
|
feature_net.net,
|
|
feature_dim,
|
|
action_dim,
|
|
device=args.device,
|
|
)
|
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
|
policy = ICMPolicy(
|
|
policy=policy,
|
|
model=icm_net,
|
|
optim=icm_optim,
|
|
action_space=env.action_space,
|
|
lr_scale=args.icm_lr_scale,
|
|
reward_scale=args.icm_reward_scale,
|
|
forward_loss_weight=args.icm_forward_loss_weight,
|
|
).to(args.device)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
# replay buffer: `save_last_obs` and `stack_num` can be removed together
|
|
# when you have enough RAM
|
|
buffer = VectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
)
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
# log
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
args.algo_name = "ppo_icm" if args.icm_lr_scale > 0 else "ppo"
|
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
|
log_path = os.path.join(args.logdir, log_name)
|
|
|
|
# logger
|
|
if args.logger == "wandb":
|
|
logger = WandbLogger(
|
|
save_interval=1,
|
|
name=log_name.replace(os.path.sep, "__"),
|
|
run_id=args.resume_id,
|
|
config=args,
|
|
project=args.wandb_project,
|
|
)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
if args.logger == "tensorboard":
|
|
logger = TensorboardLogger(writer)
|
|
else: # wandb
|
|
logger.load(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
if env.spec.reward_threshold:
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
return False
|
|
|
|
# watch agent's performance
|
|
def watch():
|
|
print("Setup test envs ...")
|
|
policy.eval()
|
|
test_envs.seed(args.seed)
|
|
if args.save_buffer_name:
|
|
print(f"Generate buffer with size {args.buffer_size}")
|
|
buffer = VectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(test_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
)
|
|
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
|
|
result = collector.collect(n_step=args.buffer_size)
|
|
print(f"Save buffer into {args.save_buffer_name}")
|
|
# Unfortunately, pickle will cause oom with 1M buffer size
|
|
buffer.save_hdf5(args.save_buffer_name)
|
|
else:
|
|
print("Testing agent ...")
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
rew = result.returns_stat.mean
|
|
lens = result.lens_stat.mean * args.skip_num
|
|
print(f"Mean reward (over {result.n_collected_episodes} episodes): {rew}")
|
|
print(f"Mean length (over {result.n_collected_episodes} episodes): {lens}")
|
|
|
|
if args.watch:
|
|
watch()
|
|
sys.exit(0)
|
|
|
|
# test train_collector and start filling replay buffer
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
step_per_collect=args.step_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
test_in_train=False,
|
|
).run()
|
|
|
|
pprint.pprint(result)
|
|
watch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_ppo(get_args())
|