Tianshou/test/base/test_collector.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

804 lines
24 KiB
Python

import gymnasium as gym
import numpy as np
import pytest
import tqdm
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import (
AsyncCollector,
Batch,
CachedReplayBuffer,
Collector,
PrioritizedReplayBuffer,
ReplayBuffer,
VectorReplayBuffer,
)
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.policy import BasePolicy
try:
import envpool
except ImportError:
envpool = None
if __name__ == "__main__":
from env import MyTestEnv, NXEnv
else: # pytest
from test.base.env import MyTestEnv, NXEnv
class MyPolicy(BasePolicy):
def __init__(
self,
action_space: gym.spaces.Space | None = None,
dict_state=False,
need_state=True,
action_shape=None,
):
"""Mock policy for testing.
:param action_space: the action space of the environment. If None, a dummy Box space will be used.
:param bool dict_state: if the observation of the environment is a dict
:param bool need_state: if the policy needs the hidden state (for RNN)
"""
action_space = action_space or gym.spaces.Box(-1, 1, (1,))
super().__init__(action_space=action_space)
self.dict_state = dict_state
self.need_state = need_state
self.action_shape = action_shape
def forward(self, batch, state=None):
if self.need_state:
if state is None:
state = np.zeros((len(batch.obs), 2))
else:
state += 1
if self.dict_state:
action_shape = self.action_shape if self.action_shape else len(batch.obs["index"])
return Batch(act=np.ones(action_shape), state=state)
action_shape = self.action_shape if self.action_shape else len(batch.obs)
return Batch(act=np.ones(action_shape), state=state)
def learn(self):
pass
class Logger:
def __init__(self, writer):
self.cnt = 0
self.writer = writer
def preprocess_fn(self, **kwargs):
# modify info before adding into the buffer, and recorded into tfb
# if obs && env_id exist -> reset
# if obs_next/rew/done/info/env_id exist -> normal step
if "rew" in kwargs:
info = kwargs["info"]
info.rew = kwargs["rew"]
if "key" in info:
self.writer.add_scalar("key", np.mean(info.key), global_step=self.cnt)
self.cnt += 1
return Batch(info=info)
return Batch()
@staticmethod
def single_preprocess_fn(**kwargs):
# same as above, without tfb
if "rew" in kwargs:
info = kwargs["info"]
info.rew = kwargs["rew"]
return Batch(info=info)
return Batch()
@pytest.mark.parametrize("gym_reset_kwargs", [None, {}])
def test_collector(gym_reset_kwargs):
writer = SummaryWriter("log/collector")
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0) for i in [2, 3, 4, 5]]
venv = SubprocVectorEnv(env_fns)
dum = DummyVectorEnv(env_fns)
policy = MyPolicy()
env = env_fns[0]()
c0 = Collector(
policy,
env,
ReplayBuffer(size=100),
logger.preprocess_fn,
)
c0.collect(n_step=3, gym_reset_kwargs=gym_reset_kwargs)
assert len(c0.buffer) == 3
assert np.allclose(c0.buffer.obs[:4, 0], [0, 1, 0, 0])
assert np.allclose(c0.buffer[:].obs_next[..., 0], [1, 2, 1])
keys = np.zeros(100)
keys[:3] = 1
assert np.allclose(c0.buffer.info["key"], keys)
for e in c0.buffer.info["env"][:3]:
assert isinstance(e, MyTestEnv)
assert np.allclose(c0.buffer.info["env_id"], 0)
rews = np.zeros(100)
rews[:3] = [0, 1, 0]
assert np.allclose(c0.buffer.info["rew"], rews)
c0.collect(n_episode=3, gym_reset_kwargs=gym_reset_kwargs)
assert len(c0.buffer) == 8
assert np.allclose(c0.buffer.obs[:10, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 0])
assert np.allclose(c0.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 1, 2])
assert np.allclose(c0.buffer.info["key"][:8], 1)
for e in c0.buffer.info["env"][:8]:
assert isinstance(e, MyTestEnv)
assert np.allclose(c0.buffer.info["env_id"][:8], 0)
assert np.allclose(c0.buffer.info["rew"][:8], [0, 1, 0, 1, 0, 1, 0, 1])
c0.collect(n_step=3, random=True, gym_reset_kwargs=gym_reset_kwargs)
c1 = Collector(
policy,
venv,
VectorReplayBuffer(total_size=100, buffer_num=4),
logger.preprocess_fn,
)
c1.collect(n_step=8, gym_reset_kwargs=gym_reset_kwargs)
obs = np.zeros(100)
valid_indices = [0, 1, 25, 26, 50, 51, 75, 76]
obs[valid_indices] = [0, 1, 0, 1, 0, 1, 0, 1]
assert np.allclose(c1.buffer.obs[:, 0], obs)
assert np.allclose(c1.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 1, 2])
keys = np.zeros(100)
keys[valid_indices] = [1, 1, 1, 1, 1, 1, 1, 1]
assert np.allclose(c1.buffer.info["key"], keys)
for e in c1.buffer.info["env"][valid_indices]:
assert isinstance(e, MyTestEnv)
env_ids = np.zeros(100)
env_ids[valid_indices] = [0, 0, 1, 1, 2, 2, 3, 3]
assert np.allclose(c1.buffer.info["env_id"], env_ids)
rews = np.zeros(100)
rews[valid_indices] = [0, 1, 0, 0, 0, 0, 0, 0]
assert np.allclose(c1.buffer.info["rew"], rews)
c1.collect(n_episode=4, gym_reset_kwargs=gym_reset_kwargs)
assert len(c1.buffer) == 16
valid_indices = [2, 3, 27, 52, 53, 77, 78, 79]
obs[[2, 3, 27, 52, 53, 77, 78, 79]] = [0, 1, 2, 2, 3, 2, 3, 4]
assert np.allclose(c1.buffer.obs[:, 0], obs)
assert np.allclose(
c1.buffer[:].obs_next[..., 0],
[1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5],
)
keys[valid_indices] = [1, 1, 1, 1, 1, 1, 1, 1]
assert np.allclose(c1.buffer.info["key"], keys)
for e in c1.buffer.info["env"][valid_indices]:
assert isinstance(e, MyTestEnv)
env_ids[valid_indices] = [0, 0, 1, 2, 2, 3, 3, 3]
assert np.allclose(c1.buffer.info["env_id"], env_ids)
rews[valid_indices] = [0, 1, 1, 0, 1, 0, 0, 1]
assert np.allclose(c1.buffer.info["rew"], rews)
c1.collect(n_episode=4, random=True, gym_reset_kwargs=gym_reset_kwargs)
c2 = Collector(
policy,
dum,
VectorReplayBuffer(total_size=100, buffer_num=4),
logger.preprocess_fn,
)
c2.collect(n_episode=7, gym_reset_kwargs=gym_reset_kwargs)
obs1 = obs.copy()
obs1[[4, 5, 28, 29, 30]] = [0, 1, 0, 1, 2]
obs2 = obs.copy()
obs2[[28, 29, 30, 54, 55, 56, 57]] = [0, 1, 2, 0, 1, 2, 3]
c2obs = c2.buffer.obs[:, 0]
assert np.all(c2obs == obs1) or np.all(c2obs == obs2)
c2.reset_env(gym_reset_kwargs=gym_reset_kwargs)
c2.reset_buffer()
assert c2.collect(n_episode=8, gym_reset_kwargs=gym_reset_kwargs).n_collected_episodes == 8
valid_indices = [4, 5, 28, 29, 30, 54, 55, 56, 57]
obs[valid_indices] = [0, 1, 0, 1, 2, 0, 1, 2, 3]
assert np.all(c2.buffer.obs[:, 0] == obs)
keys[valid_indices] = [1, 1, 1, 1, 1, 1, 1, 1, 1]
assert np.allclose(c2.buffer.info["key"], keys)
for e in c2.buffer.info["env"][valid_indices]:
assert isinstance(e, MyTestEnv)
env_ids[valid_indices] = [0, 0, 1, 1, 1, 2, 2, 2, 2]
assert np.allclose(c2.buffer.info["env_id"], env_ids)
rews[valid_indices] = [0, 1, 0, 0, 1, 0, 0, 0, 1]
assert np.allclose(c2.buffer.info["rew"], rews)
c2.collect(n_episode=4, random=True, gym_reset_kwargs=gym_reset_kwargs)
# test corner case
with pytest.raises(TypeError):
Collector(policy, dum, ReplayBuffer(10))
with pytest.raises(TypeError):
Collector(policy, dum, PrioritizedReplayBuffer(10, 0.5, 0.5))
with pytest.raises(TypeError):
c2.collect()
# test NXEnv
for obs_type in ["array", "object"]:
envs = SubprocVectorEnv([lambda i=x, t=obs_type: NXEnv(i, t) for x in [5, 10, 15, 20]])
c3 = Collector(policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4))
c3.collect(n_step=6, gym_reset_kwargs=gym_reset_kwargs)
assert c3.buffer.obs.dtype == object
@pytest.mark.parametrize("gym_reset_kwargs", [None, {}])
def test_collector_with_async(gym_reset_kwargs):
env_lens = [2, 3, 4, 5]
writer = SummaryWriter("log/async_collector")
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0.001, random_sleep=True) for i in env_lens]
venv = SubprocVectorEnv(env_fns, wait_num=len(env_fns) - 1)
policy = MyPolicy()
bufsize = 60
c1 = AsyncCollector(
policy,
venv,
VectorReplayBuffer(total_size=bufsize * 4, buffer_num=4),
logger.preprocess_fn,
)
ptr = [0, 0, 0, 0]
for n_episode in tqdm.trange(1, 30, desc="test async n_episode"):
result = c1.collect(n_episode=n_episode, gym_reset_kwargs=gym_reset_kwargs)
assert result.n_collected_episodes >= n_episode
# check buffer data, obs and obs_next, env_id
for i, count in enumerate(np.bincount(result.lens, minlength=6)[2:]):
env_len = i + 2
total = env_len * count
indices = np.arange(ptr[i], ptr[i] + total) % bufsize
ptr[i] = (ptr[i] + total) % bufsize
seq = np.arange(env_len)
buf = c1.buffer.buffers[i]
assert np.all(buf.info.env_id[indices] == i)
assert np.all(buf.obs[indices].reshape(count, env_len) == seq)
assert np.all(buf.obs_next[indices].reshape(count, env_len) == seq + 1)
# test async n_step, for now the buffer should be full of data
for n_step in tqdm.trange(1, 15, desc="test async n_step"):
result = c1.collect(n_step=n_step, gym_reset_kwargs=gym_reset_kwargs)
assert result.n_collected_steps >= n_step
for i in range(4):
env_len = i + 2
seq = np.arange(env_len)
buf = c1.buffer.buffers[i]
assert np.all(buf.info.env_id == i)
assert np.all(buf.obs.reshape(-1, env_len) == seq)
assert np.all(buf.obs_next.reshape(-1, env_len) == seq + 1)
with pytest.raises(TypeError):
c1.collect()
def test_collector_with_dict_state():
env = MyTestEnv(size=5, sleep=0, dict_state=True)
policy = MyPolicy(dict_state=True)
c0 = Collector(policy, env, ReplayBuffer(size=100), Logger.single_preprocess_fn)
c0.collect(n_step=3)
c0.collect(n_episode=2)
assert len(c0.buffer) == 10
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, dict_state=True) for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
envs.seed(666)
obs, info = envs.reset()
assert not np.isclose(obs[0]["rand"], obs[1]["rand"])
c1 = Collector(
policy,
envs,
VectorReplayBuffer(total_size=100, buffer_num=4),
Logger.single_preprocess_fn,
)
c1.collect(n_step=12)
result = c1.collect(n_episode=8)
assert result.n_collected_episodes == 8
lens = np.bincount(result.lens)
assert (
result.n_collected_steps == 21
and np.all(lens == [0, 0, 2, 2, 2, 2])
or result.n_collected_steps == 20
and np.all(lens == [0, 0, 3, 1, 2, 2])
)
batch, _ = c1.buffer.sample(10)
c0.buffer.update(c1.buffer)
assert len(c0.buffer) in [42, 43]
if len(c0.buffer) == 42:
assert np.all(
c0.buffer[:].obs.index[..., 0]
== [
0,
1,
2,
3,
4,
0,
1,
2,
3,
4,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
2,
0,
1,
2,
0,
1,
2,
3,
0,
1,
2,
3,
0,
1,
2,
3,
4,
0,
1,
2,
3,
4,
],
), c0.buffer[:].obs.index[..., 0]
else:
assert np.all(
c0.buffer[:].obs.index[..., 0]
== [
0,
1,
2,
3,
4,
0,
1,
2,
3,
4,
0,
1,
0,
1,
0,
1,
0,
1,
2,
0,
1,
2,
0,
1,
2,
0,
1,
2,
3,
0,
1,
2,
3,
0,
1,
2,
3,
4,
0,
1,
2,
3,
4,
],
), c0.buffer[:].obs.index[..., 0]
c2 = Collector(
policy,
envs,
VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4),
Logger.single_preprocess_fn,
)
c2.collect(n_episode=10)
batch, _ = c2.buffer.sample(10)
def test_collector_with_ma():
env = MyTestEnv(size=5, sleep=0, ma_rew=4)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100), Logger.single_preprocess_fn)
# n_step=3 will collect a full episode
rew = c0.collect(n_step=3).returns
assert len(rew) == 0
rew = c0.collect(n_episode=2).returns
assert rew.shape == (2, 4)
assert np.all(rew == 1)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4) for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
c1 = Collector(
policy,
envs,
VectorReplayBuffer(total_size=100, buffer_num=4),
Logger.single_preprocess_fn,
)
rew = c1.collect(n_step=12).returns
assert rew.shape == (2, 4) and np.all(rew == 1), rew
rew = c1.collect(n_episode=8).returns
assert rew.shape == (8, 4)
assert np.all(rew == 1)
batch, _ = c1.buffer.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
assert len(c0.buffer) in [42, 43]
if len(c0.buffer) == 42:
rew = [
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
0,
1,
0,
0,
1,
0,
0,
0,
1,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
]
else:
rew = [
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
1,
0,
0,
1,
0,
0,
1,
0,
0,
1,
0,
0,
0,
1,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
]
assert np.all(c0.buffer[:].rew == [[x] * 4 for x in rew])
assert np.all(c0.buffer[:].done == rew)
c2 = Collector(
policy,
envs,
VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4),
Logger.single_preprocess_fn,
)
rew = c2.collect(n_episode=10).returns
assert rew.shape == (10, 4)
assert np.all(rew == 1)
batch, _ = c2.buffer.sample(10)
def test_collector_with_atari_setting():
reference_obs = np.zeros([6, 4, 84, 84])
for i in range(6):
reference_obs[i, 3, np.arange(84), np.arange(84)] = i
reference_obs[i, 2, np.arange(84)] = i
reference_obs[i, 1, :, np.arange(84)] = i
reference_obs[i, 0] = i
# atari single buffer
env = MyTestEnv(size=5, sleep=0, array_state=True)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100))
c0.collect(n_step=6)
c0.collect(n_episode=2)
assert c0.buffer.obs.shape == (100, 4, 84, 84)
assert c0.buffer.obs_next.shape == (100, 4, 84, 84)
assert len(c0.buffer) == 15
obs = np.zeros_like(c0.buffer.obs)
obs[np.arange(15)] = reference_obs[np.arange(15) % 5]
assert np.all(obs == c0.buffer.obs)
c1 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=True))
c1.collect(n_episode=3)
assert np.allclose(c0.buffer.obs, c1.buffer.obs)
with pytest.raises(AttributeError):
c1.buffer.obs_next # noqa: B018
assert np.all(reference_obs[[1, 2, 3, 4, 4] * 3] == c1.buffer[:].obs_next)
c2 = Collector(
policy,
env,
ReplayBuffer(size=100, ignore_obs_next=True, save_only_last_obs=True),
)
c2.collect(n_step=8)
assert c2.buffer.obs.shape == (100, 84, 84)
obs = np.zeros_like(c2.buffer.obs)
obs[np.arange(8)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2], -1]
assert np.all(c2.buffer.obs == obs)
assert np.allclose(c2.buffer[:].obs_next, reference_obs[[1, 2, 3, 4, 4, 1, 2, 2], -1])
# atari multi buffer
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, array_state=True) for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
c3 = Collector(policy, envs, VectorReplayBuffer(total_size=100, buffer_num=4))
c3.collect(n_step=12)
result = c3.collect(n_episode=9)
assert result.n_collected_episodes == 9
assert result.n_collected_steps == 23
assert c3.buffer.obs.shape == (100, 4, 84, 84)
obs = np.zeros_like(c3.buffer.obs)
obs[np.arange(8)] = reference_obs[[0, 1, 0, 1, 0, 1, 0, 1]]
obs[np.arange(25, 34)] = reference_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]]
obs[np.arange(50, 58)] = reference_obs[[0, 1, 2, 3, 0, 1, 2, 3]]
obs[np.arange(75, 85)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]]
assert np.all(obs == c3.buffer.obs)
obs_next = np.zeros_like(c3.buffer.obs_next)
obs_next[np.arange(8)] = reference_obs[[1, 2, 1, 2, 1, 2, 1, 2]]
obs_next[np.arange(25, 34)] = reference_obs[[1, 2, 3, 1, 2, 3, 1, 2, 3]]
obs_next[np.arange(50, 58)] = reference_obs[[1, 2, 3, 4, 1, 2, 3, 4]]
obs_next[np.arange(75, 85)] = reference_obs[[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]]
assert np.all(obs_next == c3.buffer.obs_next)
c4 = Collector(
policy,
envs,
VectorReplayBuffer(
total_size=100,
buffer_num=4,
stack_num=4,
ignore_obs_next=True,
save_only_last_obs=True,
),
)
c4.collect(n_step=12)
result = c4.collect(n_episode=9)
assert result.n_collected_episodes == 9
assert result.n_collected_steps == 23
assert c4.buffer.obs.shape == (100, 84, 84)
obs = np.zeros_like(c4.buffer.obs)
slice_obs = reference_obs[:, -1]
obs[np.arange(8)] = slice_obs[[0, 1, 0, 1, 0, 1, 0, 1]]
obs[np.arange(25, 34)] = slice_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]]
obs[np.arange(50, 58)] = slice_obs[[0, 1, 2, 3, 0, 1, 2, 3]]
obs[np.arange(75, 85)] = slice_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]]
assert np.all(c4.buffer.obs == obs)
obs_next = np.zeros([len(c4.buffer), 4, 84, 84])
ref_index = np.array(
[
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
1,
2,
2,
1,
2,
2,
1,
2,
3,
3,
1,
2,
3,
3,
1,
2,
3,
4,
4,
1,
2,
3,
4,
4,
],
)
obs_next[:, -1] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -2] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -3] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -4] = slice_obs[ref_index]
assert np.all(obs_next == c4.buffer[:].obs_next)
buf = ReplayBuffer(100, stack_num=4, ignore_obs_next=True, save_only_last_obs=True)
c5 = Collector(policy, envs, CachedReplayBuffer(buf, 4, 10))
result_ = c5.collect(n_step=12)
assert len(buf) == 5
assert len(c5.buffer) == 12
result = c5.collect(n_episode=9)
assert result.n_collected_episodes == 9
assert result.n_collected_steps == 23
assert len(buf) == 35
assert np.all(
buf.obs[: len(buf)]
== slice_obs[
[
0,
1,
0,
1,
2,
0,
1,
0,
1,
2,
3,
0,
1,
2,
3,
4,
0,
1,
0,
1,
2,
0,
1,
0,
1,
2,
3,
0,
1,
2,
0,
1,
2,
3,
4,
]
],
)
assert np.all(
buf[:].obs_next[:, -1]
== slice_obs[
[
1,
1,
1,
2,
2,
1,
1,
1,
2,
3,
3,
1,
2,
3,
4,
4,
1,
1,
1,
2,
2,
1,
1,
1,
2,
3,
3,
1,
2,
2,
1,
2,
3,
4,
4,
]
],
)
assert len(buf) == len(c5.buffer)
# test buffer=None
c6 = Collector(policy, envs)
result1 = c6.collect(n_step=12)
for key in ["n_collected_episodes", "n_collected_steps", "returns", "lens"]:
assert np.allclose(getattr(result1, key), getattr(result_, key))
result2 = c6.collect(n_episode=9)
for key in ["n_collected_episodes", "n_collected_steps", "returns", "lens"]:
assert np.allclose(getattr(result2, key), getattr(result, key))
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_collector_envpool_gym_reset_return_info():
envs = envpool.make_gymnasium("Pendulum-v1", num_envs=4, gym_reset_return_info=True)
policy = MyPolicy(action_shape=(len(envs), 1))
c0 = Collector(
policy,
envs,
VectorReplayBuffer(len(envs) * 10, len(envs)),
exploration_noise=True,
)
c0.collect(n_step=8)
env_ids = np.zeros(len(envs) * 10)
env_ids[[0, 1, 10, 11, 20, 21, 30, 31]] = [0, 0, 1, 1, 2, 2, 3, 3]
assert np.allclose(c0.buffer.info["env_id"], env_ids)
if __name__ == "__main__":
test_collector(gym_reset_kwargs=None)
test_collector(gym_reset_kwargs={})
test_collector_with_dict_state()
test_collector_with_ma()
test_collector_with_atari_setting()
test_collector_with_async(gym_reset_kwargs=None)
test_collector_with_async(gym_reset_kwargs={"return_info": True})
test_collector_envpool_gym_reset_return_info()