Tianshou/test/discrete/test_a2c_with_il.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

189 lines
7.1 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import pytest
import torch
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic
try:
import envpool
except ImportError:
envpool = None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--il-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--update-per-step", type=float, default=1 / 16)
parser.add_argument("--repeat-per-collect", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# a2c special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--max-grad-norm", type=float, default=None)
parser.add_argument("--gae-lambda", type=float, default=1.0)
parser.add_argument("--rew-norm", action="store_true", default=False)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_a2c_with_il(args=get_args()):
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.training_num,
seed=args.seed,
)
test_envs = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.test_num,
seed=args.seed,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = A2CPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm,
reward_normalization=args.rew_norm,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "a2c")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
policy.eval()
# here we define an imitation collector with a trivial policy
# if args.task == 'CartPole-v0':
# env.spec.reward_threshold = 190 # lower the goal
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
net = Actor(net, args.action_shape, device=args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(actor=net, optim=optim, action_space=env.action_space)
il_test_collector = Collector(
il_policy,
envpool.make(args.task, env_type="gymnasium", num_envs=args.test_num, seed=args.seed),
)
train_collector.reset()
result = OffpolicyTrainer(
policy=il_policy,
train_collector=train_collector,
test_collector=il_test_collector,
max_epoch=args.epoch,
step_per_epoch=args.il_step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
il_policy.eval()
collector = Collector(il_policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
if __name__ == "__main__":
test_a2c_with_il()