This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
215 lines
7.4 KiB
Python
215 lines
7.4 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import BCQPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import MLP, Net
|
|
from tianshou.utils.net.continuous import VAE, Critic, Perturbation
|
|
|
|
if __name__ == "__main__":
|
|
from gather_pendulum_data import expert_file_name, gather_data
|
|
else: # pytest
|
|
from test.offline.gather_pendulum_data import expert_file_name, gather_data
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64])
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=500)
|
|
parser.add_argument("--batch-size", type=int, default=32)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=1 / 35)
|
|
|
|
parser.add_argument("--vae-hidden-sizes", type=int, nargs="*", default=[32, 32])
|
|
# default to 2 * action_dim
|
|
parser.add_argument("--latent_dim", type=int, default=None)
|
|
parser.add_argument("--gamma", default=0.99)
|
|
parser.add_argument("--tau", default=0.005)
|
|
# Weighting for Clipped Double Q-learning in BCQ
|
|
parser.add_argument("--lmbda", default=0.75)
|
|
# Max perturbation hyper-parameter for BCQ
|
|
parser.add_argument("--phi", default=0.05)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
parser.add_argument("--show-progress", action="store_true")
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_bcq(args=get_args()):
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0] # float
|
|
if args.reward_threshold is None:
|
|
# too low?
|
|
default_reward_threshold = {"Pendulum-v0": -1100, "Pendulum-v1": -1100}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
|
|
args.state_dim = args.state_shape[0]
|
|
args.action_dim = args.action_shape[0]
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
# perturbation network
|
|
net_a = MLP(
|
|
input_dim=args.state_dim + args.action_dim,
|
|
output_dim=args.action_dim,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
actor = Perturbation(net_a, max_action=args.max_action, device=args.device, phi=args.phi).to(
|
|
args.device,
|
|
)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
net_c = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic = Critic(net_c, device=args.device).to(args.device)
|
|
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
|
|
|
# vae
|
|
# output_dim = 0, so the last Module in the encoder is ReLU
|
|
vae_encoder = MLP(
|
|
input_dim=args.state_dim + args.action_dim,
|
|
hidden_sizes=args.vae_hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
if not args.latent_dim:
|
|
args.latent_dim = args.action_dim * 2
|
|
vae_decoder = MLP(
|
|
input_dim=args.state_dim + args.latent_dim,
|
|
output_dim=args.action_dim,
|
|
hidden_sizes=args.vae_hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
vae = VAE(
|
|
vae_encoder,
|
|
vae_decoder,
|
|
hidden_dim=args.vae_hidden_sizes[-1],
|
|
latent_dim=args.latent_dim,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
).to(args.device)
|
|
vae_optim = torch.optim.Adam(vae.parameters())
|
|
|
|
policy = BCQPolicy(
|
|
actor_perturbation=actor,
|
|
actor_perturbation_optim=actor_optim,
|
|
critic=critic,
|
|
critic_optim=critic_optim,
|
|
vae=vae,
|
|
vae_optim=vae_optim,
|
|
action_space=env.action_space,
|
|
device=args.device,
|
|
gamma=args.gamma,
|
|
tau=args.tau,
|
|
lmbda=args.lmbda,
|
|
)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
# buffer has been gathered
|
|
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_bcq'
|
|
log_path = os.path.join(args.logdir, args.task, "bcq", log_file)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
def watch():
|
|
policy.load_state_dict(
|
|
torch.load(os.path.join(log_path, "policy.pth"), map_location=torch.device("cpu")),
|
|
)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
collector.collect(n_episode=1, render=1 / 35)
|
|
|
|
# trainer
|
|
result = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
save_best_fn=save_best_fn,
|
|
stop_fn=stop_fn,
|
|
logger=logger,
|
|
show_progress=args.show_progress,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
# Let's watch its performance!
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_bcq()
|