This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
1114 lines
40 KiB
Python
1114 lines
40 KiB
Python
import os
|
|
import pickle
|
|
from abc import abstractmethod
|
|
from collections.abc import Sequence
|
|
from dataclasses import dataclass
|
|
from pprint import pformat
|
|
from typing import Self
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from tianshou.data import Collector, InfoStats
|
|
from tianshou.highlevel.agent import (
|
|
A2CAgentFactory,
|
|
AgentFactory,
|
|
DDPGAgentFactory,
|
|
DiscreteSACAgentFactory,
|
|
DQNAgentFactory,
|
|
IQNAgentFactory,
|
|
NPGAgentFactory,
|
|
PGAgentFactory,
|
|
PPOAgentFactory,
|
|
REDQAgentFactory,
|
|
SACAgentFactory,
|
|
TD3AgentFactory,
|
|
TRPOAgentFactory,
|
|
)
|
|
from tianshou.highlevel.config import SamplingConfig
|
|
from tianshou.highlevel.env import EnvFactory
|
|
from tianshou.highlevel.logger import LoggerFactory, LoggerFactoryDefault, TLogger
|
|
from tianshou.highlevel.module.actor import (
|
|
ActorFactory,
|
|
ActorFactoryDefault,
|
|
ActorFactoryTransientStorageDecorator,
|
|
ActorFuture,
|
|
ActorFutureProviderProtocol,
|
|
ContinuousActorType,
|
|
IntermediateModuleFactoryFromActorFactory,
|
|
)
|
|
from tianshou.highlevel.module.core import (
|
|
TDevice,
|
|
)
|
|
from tianshou.highlevel.module.critic import (
|
|
CriticEnsembleFactory,
|
|
CriticEnsembleFactoryDefault,
|
|
CriticFactory,
|
|
CriticFactoryDefault,
|
|
CriticFactoryReuseActor,
|
|
)
|
|
from tianshou.highlevel.module.intermediate import IntermediateModuleFactory
|
|
from tianshou.highlevel.module.special import ImplicitQuantileNetworkFactory
|
|
from tianshou.highlevel.optim import OptimizerFactory, OptimizerFactoryAdam
|
|
from tianshou.highlevel.params.policy_params import (
|
|
A2CParams,
|
|
DDPGParams,
|
|
DiscreteSACParams,
|
|
DQNParams,
|
|
IQNParams,
|
|
NPGParams,
|
|
PGParams,
|
|
PPOParams,
|
|
REDQParams,
|
|
SACParams,
|
|
TD3Params,
|
|
TRPOParams,
|
|
)
|
|
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
|
|
from tianshou.highlevel.persistence import (
|
|
PersistenceGroup,
|
|
PolicyPersistence,
|
|
)
|
|
from tianshou.highlevel.trainer import (
|
|
TrainerCallbacks,
|
|
TrainerEpochCallbackTest,
|
|
TrainerEpochCallbackTrain,
|
|
TrainerStopCallback,
|
|
)
|
|
from tianshou.highlevel.world import World
|
|
from tianshou.policy import BasePolicy
|
|
from tianshou.utils import LazyLogger, logging
|
|
from tianshou.utils.logging import datetime_tag
|
|
from tianshou.utils.net.common import ModuleType
|
|
from tianshou.utils.string import ToStringMixin
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ExperimentConfig:
|
|
"""Generic config for setting up the experiment, not RL or training specific."""
|
|
|
|
seed: int = 42
|
|
"""The random seed with which to initialize random number generators."""
|
|
device: TDevice = "cuda" if torch.cuda.is_available() else "cpu"
|
|
"""The torch device to use"""
|
|
policy_restore_directory: str | None = None
|
|
"""Directory from which to load the policy neural network parameters (persistence directory of a previous run)"""
|
|
train: bool = True
|
|
"""Whether to perform training"""
|
|
watch: bool = True
|
|
"""Whether to watch agent performance (after training)"""
|
|
watch_num_episodes = 10
|
|
"""Number of episodes for which to watch performance (if `watch` is enabled)"""
|
|
watch_render: float = 0.0
|
|
"""Milliseconds between rendered frames when watching agent performance (if `watch` is enabled)"""
|
|
persistence_base_dir: str = "log"
|
|
"""Base directory in which experiment data is to be stored. Every experiment run will create a subdirectory
|
|
in this directory based on the run's experiment name"""
|
|
persistence_enabled: bool = True
|
|
"""Whether persistence is enabled, allowing files to be stored"""
|
|
log_file_enabled: bool = True
|
|
"""Whether to write to a log file; has no effect if `persistence_enabled` is False.
|
|
Disable this if you have externally configured log file generation."""
|
|
policy_persistence_mode: PolicyPersistence.Mode = PolicyPersistence.Mode.POLICY
|
|
"""Controls the way in which the policy is persisted"""
|
|
|
|
|
|
@dataclass
|
|
class ExperimentResult:
|
|
"""Contains the results of an experiment."""
|
|
|
|
world: World
|
|
"""contains all the essential instances of the experiment"""
|
|
trainer_result: InfoStats | None
|
|
"""dataclass of results as returned by the trainer (if any)"""
|
|
|
|
|
|
class Experiment(ToStringMixin):
|
|
"""Represents a reinforcement learning experiment.
|
|
|
|
An experiment is composed only of configuration and factory objects, which themselves
|
|
should be designed to contain only configuration. Therefore, experiments can easily
|
|
be stored/pickled and later restored without any problems.
|
|
"""
|
|
|
|
LOG_FILENAME = "log.txt"
|
|
EXPERIMENT_PICKLE_FILENAME = "experiment.pkl"
|
|
|
|
def __init__(
|
|
self,
|
|
config: ExperimentConfig,
|
|
env_factory: EnvFactory,
|
|
agent_factory: AgentFactory,
|
|
sampling_config: SamplingConfig,
|
|
logger_factory: LoggerFactory | None = None,
|
|
):
|
|
if logger_factory is None:
|
|
logger_factory = LoggerFactoryDefault()
|
|
self.config = config
|
|
self.sampling_config = sampling_config
|
|
self.env_factory = env_factory
|
|
self.agent_factory = agent_factory
|
|
self.logger_factory = logger_factory
|
|
|
|
@classmethod
|
|
def from_directory(cls, directory: str, restore_policy: bool = True) -> "Experiment":
|
|
"""Restores an experiment from a previously stored pickle.
|
|
|
|
:param directory: persistence directory of a previous run, in which a pickled experiment is found
|
|
:param restore_policy: whether the experiment shall be configured to restore the policy that was
|
|
persisted in the given directory
|
|
"""
|
|
with open(os.path.join(directory, cls.EXPERIMENT_PICKLE_FILENAME), "rb") as f:
|
|
experiment: Experiment = pickle.load(f)
|
|
if restore_policy:
|
|
experiment.config.policy_restore_directory = directory
|
|
return experiment
|
|
|
|
def _set_seed(self) -> None:
|
|
seed = self.config.seed
|
|
log.info(f"Setting random seed {seed}")
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
|
|
def _build_config_dict(self) -> dict:
|
|
return {"experiment": self.pprints()}
|
|
|
|
def save(self, directory: str) -> None:
|
|
path = os.path.join(directory, self.EXPERIMENT_PICKLE_FILENAME)
|
|
log.info(
|
|
f"Saving serialized experiment in {path}; can be restored via Experiment.from_directory('{directory}')",
|
|
)
|
|
with open(path, "wb") as f:
|
|
pickle.dump(self, f)
|
|
|
|
def run(
|
|
self,
|
|
experiment_name: str | None = None,
|
|
logger_run_id: str | None = None,
|
|
) -> ExperimentResult:
|
|
"""Run the experiment and return the results.
|
|
|
|
:param experiment_name: the experiment name, which corresponds to the directory (within the logging
|
|
directory) where all results associated with the experiment will be saved.
|
|
The name may contain path separators (i.e. `os.path.sep`, as used by `os.path.join`), in which case
|
|
a nested directory structure will be created.
|
|
If None, use a name containing the current date and time.
|
|
:param logger_run_id: Run identifier to use for logger initialization/resumption (applies when
|
|
using wandb, in particular).
|
|
:return:
|
|
"""
|
|
if experiment_name is None:
|
|
experiment_name = datetime_tag()
|
|
|
|
# initialize persistence directory
|
|
use_persistence = self.config.persistence_enabled
|
|
persistence_dir = os.path.join(self.config.persistence_base_dir, experiment_name)
|
|
if use_persistence:
|
|
os.makedirs(persistence_dir, exist_ok=True)
|
|
|
|
with logging.FileLoggerContext(
|
|
os.path.join(persistence_dir, self.LOG_FILENAME),
|
|
enabled=use_persistence and self.config.log_file_enabled,
|
|
):
|
|
# log initial information
|
|
log.info(f"Running experiment (name='{experiment_name}'):\n{self.pprints()}")
|
|
log.info(f"Working directory: {os.getcwd()}")
|
|
|
|
self._set_seed()
|
|
|
|
# create environments
|
|
envs = self.env_factory.create_envs(
|
|
self.sampling_config.num_train_envs,
|
|
self.sampling_config.num_test_envs,
|
|
)
|
|
log.info(f"Created {envs}")
|
|
|
|
# initialize persistence
|
|
additional_persistence = PersistenceGroup(*envs.persistence, enabled=use_persistence)
|
|
policy_persistence = PolicyPersistence(
|
|
additional_persistence,
|
|
enabled=use_persistence,
|
|
mode=self.config.policy_persistence_mode,
|
|
)
|
|
if use_persistence:
|
|
log.info(f"Persistence directory: {os.path.abspath(persistence_dir)}")
|
|
self.save(persistence_dir)
|
|
|
|
# initialize logger
|
|
full_config = self._build_config_dict()
|
|
full_config.update(envs.info())
|
|
logger: TLogger
|
|
if use_persistence:
|
|
logger = self.logger_factory.create_logger(
|
|
log_dir=persistence_dir,
|
|
experiment_name=experiment_name,
|
|
run_id=logger_run_id,
|
|
config_dict=full_config,
|
|
)
|
|
else:
|
|
logger = LazyLogger()
|
|
|
|
# create policy and collectors
|
|
log.info("Creating policy")
|
|
policy = self.agent_factory.create_policy(envs, self.config.device)
|
|
log.info("Creating collectors")
|
|
train_collector, test_collector = self.agent_factory.create_train_test_collector(
|
|
policy,
|
|
envs,
|
|
)
|
|
|
|
# create context object with all relevant instances (except trainer; added later)
|
|
world = World(
|
|
envs=envs,
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
logger=logger,
|
|
persist_directory=persistence_dir,
|
|
restore_directory=self.config.policy_restore_directory,
|
|
)
|
|
|
|
# restore policy parameters if applicable
|
|
if self.config.policy_restore_directory:
|
|
policy_persistence.restore(
|
|
policy,
|
|
world,
|
|
self.config.device,
|
|
)
|
|
|
|
# train policy
|
|
log.info("Starting training")
|
|
trainer_result: InfoStats | None = None
|
|
if self.config.train:
|
|
trainer = self.agent_factory.create_trainer(world, policy_persistence)
|
|
world.trainer = trainer
|
|
trainer_result = trainer.run()
|
|
log.info(f"Training result:\n{pformat(trainer_result)}")
|
|
|
|
# watch agent performance
|
|
if self.config.watch:
|
|
log.info("Watching agent performance")
|
|
self._watch_agent(
|
|
self.config.watch_num_episodes,
|
|
policy,
|
|
test_collector,
|
|
self.config.watch_render,
|
|
)
|
|
|
|
return ExperimentResult(world=world, trainer_result=trainer_result)
|
|
|
|
@staticmethod
|
|
def _watch_agent(
|
|
num_episodes: int,
|
|
policy: BasePolicy,
|
|
test_collector: Collector,
|
|
render: float,
|
|
) -> None:
|
|
policy.eval()
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=num_episodes, render=render)
|
|
assert result.returns_stat is not None # for mypy
|
|
assert result.lens_stat is not None # for mypy
|
|
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
|
|
|
|
|
|
class ExperimentBuilder:
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
if experiment_config is None:
|
|
experiment_config = ExperimentConfig()
|
|
if sampling_config is None:
|
|
sampling_config = SamplingConfig()
|
|
self._config = experiment_config
|
|
self._env_factory = env_factory
|
|
self._sampling_config = sampling_config
|
|
self._logger_factory: LoggerFactory | None = None
|
|
self._optim_factory: OptimizerFactory | None = None
|
|
self._policy_wrapper_factory: PolicyWrapperFactory | None = None
|
|
self._trainer_callbacks: TrainerCallbacks = TrainerCallbacks()
|
|
|
|
def with_logger_factory(self, logger_factory: LoggerFactory) -> Self:
|
|
"""Allows to customize the logger factory to use.
|
|
|
|
If this method is not called, the default logger factory :class:`LoggerFactoryDefault` will be used.
|
|
|
|
:param logger_factory: the factory to use
|
|
:return: the builder
|
|
"""
|
|
self._logger_factory = logger_factory
|
|
return self
|
|
|
|
def with_policy_wrapper_factory(self, policy_wrapper_factory: PolicyWrapperFactory) -> Self:
|
|
"""Allows to define a wrapper around the policy that is created, extending the original policy.
|
|
|
|
:param policy_wrapper_factory: the factory for the wrapper
|
|
:return: the builder
|
|
"""
|
|
self._policy_wrapper_factory = policy_wrapper_factory
|
|
return self
|
|
|
|
def with_optim_factory(self, optim_factory: OptimizerFactory) -> Self:
|
|
"""Allows to customize the gradient-based optimizer to use.
|
|
|
|
By default, :class:`OptimizerFactoryAdam` will be used with default parameters.
|
|
|
|
:param optim_factory: the optimizer factory
|
|
:return: the builder
|
|
"""
|
|
self._optim_factory = optim_factory
|
|
return self
|
|
|
|
def with_optim_factory_default(
|
|
self,
|
|
betas: tuple[float, float] = (0.9, 0.999),
|
|
eps: float = 1e-08,
|
|
weight_decay: float = 0,
|
|
) -> Self:
|
|
"""Configures the use of the default optimizer, Adam, with the given parameters.
|
|
|
|
:param betas: coefficients used for computing running averages of gradient and its square
|
|
:param eps: term added to the denominator to improve numerical stability
|
|
:param weight_decay: weight decay (L2 penalty)
|
|
:return: the builder
|
|
"""
|
|
self._optim_factory = OptimizerFactoryAdam(betas=betas, eps=eps, weight_decay=weight_decay)
|
|
return self
|
|
|
|
def with_trainer_epoch_callback_train(self, callback: TrainerEpochCallbackTrain) -> Self:
|
|
"""Allows to define a callback function which is called at the beginning of every epoch during training.
|
|
|
|
:param callback: the callback
|
|
:return: the builder
|
|
"""
|
|
self._trainer_callbacks.epoch_callback_train = callback
|
|
return self
|
|
|
|
def with_trainer_epoch_callback_test(self, callback: TrainerEpochCallbackTest) -> Self:
|
|
"""Allows to define a callback function which is called at the beginning of testing in each epoch.
|
|
|
|
:param callback: the callback
|
|
:return: the builder
|
|
"""
|
|
self._trainer_callbacks.epoch_callback_test = callback
|
|
return self
|
|
|
|
def with_trainer_stop_callback(self, callback: TrainerStopCallback) -> Self:
|
|
"""Allows to define a callback that decides whether training shall stop early.
|
|
|
|
The callback receives the undiscounted returns of the testing result.
|
|
|
|
:param callback: the callback
|
|
:return: the builder
|
|
"""
|
|
self._trainer_callbacks.stop_callback = callback
|
|
return self
|
|
|
|
@abstractmethod
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
pass
|
|
|
|
def _get_optim_factory(self) -> OptimizerFactory:
|
|
if self._optim_factory is None:
|
|
return OptimizerFactoryAdam()
|
|
else:
|
|
return self._optim_factory
|
|
|
|
def build(self) -> Experiment:
|
|
"""Creates the experiment based on the options specified via this builder.
|
|
|
|
:return: the experiment
|
|
"""
|
|
agent_factory = self._create_agent_factory()
|
|
agent_factory.set_trainer_callbacks(self._trainer_callbacks)
|
|
if self._policy_wrapper_factory:
|
|
agent_factory.set_policy_wrapper_factory(self._policy_wrapper_factory)
|
|
experiment: Experiment = Experiment(
|
|
self._config,
|
|
self._env_factory,
|
|
agent_factory,
|
|
self._sampling_config,
|
|
self._logger_factory,
|
|
)
|
|
return experiment
|
|
|
|
|
|
class _BuilderMixinActorFactory(ActorFutureProviderProtocol):
|
|
def __init__(self, continuous_actor_type: ContinuousActorType):
|
|
self._continuous_actor_type = continuous_actor_type
|
|
self._actor_future = ActorFuture()
|
|
self._actor_factory: ActorFactory | None = None
|
|
|
|
def with_actor_factory(self, actor_factory: ActorFactory) -> Self:
|
|
"""Allows to customize the actor component via the specification of a factory.
|
|
|
|
If this function is not called, a default actor factory (with default parameters) will be used.
|
|
|
|
:param actor_factory: the factory to use for the creation of the actor network
|
|
:return: the builder
|
|
"""
|
|
self._actor_factory = actor_factory
|
|
return self
|
|
|
|
def _with_actor_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int],
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
continuous_unbounded: bool = False,
|
|
continuous_conditioned_sigma: bool = False,
|
|
) -> Self:
|
|
"""Adds a default actor factory with the given parameters.
|
|
|
|
:param hidden_sizes: the sequence of hidden dimensions to use in the network structure
|
|
:param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
|
|
:param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
|
|
shall be computed from the input; if False, sigma is an independent parameter.
|
|
:return: the builder
|
|
"""
|
|
self._actor_factory = ActorFactoryDefault(
|
|
self._continuous_actor_type,
|
|
hidden_sizes,
|
|
hidden_activation=hidden_activation,
|
|
continuous_unbounded=continuous_unbounded,
|
|
continuous_conditioned_sigma=continuous_conditioned_sigma,
|
|
)
|
|
return self
|
|
|
|
def get_actor_future(self) -> ActorFuture:
|
|
""":return: an object, which, in the future, will contain the actor instance that is created for the experiment."""
|
|
return self._actor_future
|
|
|
|
def _get_actor_factory(self) -> ActorFactory:
|
|
actor_factory: ActorFactory
|
|
if self._actor_factory is None:
|
|
actor_factory = ActorFactoryDefault(self._continuous_actor_type)
|
|
else:
|
|
actor_factory = self._actor_factory
|
|
return ActorFactoryTransientStorageDecorator(actor_factory, self._actor_future)
|
|
|
|
|
|
class _BuilderMixinActorFactory_ContinuousGaussian(_BuilderMixinActorFactory):
|
|
"""Specialization of the actor mixin where, in the continuous case, the actor component outputs Gaussian distribution parameters."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__(ContinuousActorType.GAUSSIAN)
|
|
|
|
def with_actor_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int],
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
continuous_unbounded: bool = False,
|
|
continuous_conditioned_sigma: bool = False,
|
|
) -> Self:
|
|
"""Defines use of the default actor factory, allowing its parameters it to be customized.
|
|
|
|
The default actor factory uses an MLP-style architecture.
|
|
|
|
:param hidden_sizes: dimensions of hidden layers used by the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
|
|
:param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
|
|
shall be computed from the input; if False, sigma is an independent parameter.
|
|
:return: the builder
|
|
"""
|
|
return super()._with_actor_factory_default(
|
|
hidden_sizes,
|
|
hidden_activation=hidden_activation,
|
|
continuous_unbounded=continuous_unbounded,
|
|
continuous_conditioned_sigma=continuous_conditioned_sigma,
|
|
)
|
|
|
|
|
|
class _BuilderMixinActorFactory_ContinuousDeterministic(_BuilderMixinActorFactory):
|
|
"""Specialization of the actor mixin where, in the continuous case, the actor uses a deterministic policy."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__(ContinuousActorType.DETERMINISTIC)
|
|
|
|
def with_actor_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int],
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
"""Defines use of the default actor factory, allowing its parameters it to be customized.
|
|
|
|
The default actor factory uses an MLP-style architecture.
|
|
|
|
:param hidden_sizes: dimensions of hidden layers used by the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:return: the builder
|
|
"""
|
|
return super()._with_actor_factory_default(hidden_sizes, hidden_activation)
|
|
|
|
|
|
class _BuilderMixinCriticsFactory:
|
|
def __init__(self, num_critics: int, actor_future_provider: ActorFutureProviderProtocol):
|
|
self._actor_future_provider = actor_future_provider
|
|
self._critic_factories: list[CriticFactory | None] = [None] * num_critics
|
|
|
|
def _with_critic_factory(self, idx: int, critic_factory: CriticFactory) -> Self:
|
|
self._critic_factories[idx] = critic_factory
|
|
return self
|
|
|
|
def _with_critic_factory_default(
|
|
self,
|
|
idx: int,
|
|
hidden_sizes: Sequence[int],
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
self._critic_factories[idx] = CriticFactoryDefault(
|
|
hidden_sizes,
|
|
hidden_activation=hidden_activation,
|
|
)
|
|
return self
|
|
|
|
def _with_critic_factory_use_actor(self, idx: int) -> Self:
|
|
self._critic_factories[idx] = CriticFactoryReuseActor(
|
|
self._actor_future_provider.get_actor_future(),
|
|
)
|
|
return self
|
|
|
|
def _get_critic_factory(self, idx: int) -> CriticFactory:
|
|
factory = self._critic_factories[idx]
|
|
if factory is None:
|
|
return CriticFactoryDefault()
|
|
else:
|
|
return factory
|
|
|
|
|
|
class _BuilderMixinSingleCriticFactory(_BuilderMixinCriticsFactory):
|
|
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
|
|
super().__init__(1, actor_future_provider)
|
|
|
|
def with_critic_factory(self, critic_factory: CriticFactory) -> Self:
|
|
"""Specifies that the given factory shall be used for the critic.
|
|
|
|
:param critic_factory: the critic factory
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory(0, critic_factory)
|
|
return self
|
|
|
|
def with_critic_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
"""Makes the critic use the default, MLP-style architecture with the given parameters.
|
|
|
|
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
|
|
return self
|
|
|
|
|
|
class _BuilderMixinSingleCriticCanUseActorFactory(_BuilderMixinSingleCriticFactory):
|
|
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
|
|
super().__init__(actor_future_provider)
|
|
|
|
def with_critic_factory_use_actor(self) -> Self:
|
|
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
|
|
return self._with_critic_factory_use_actor(0)
|
|
|
|
|
|
class _BuilderMixinDualCriticFactory(_BuilderMixinCriticsFactory):
|
|
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
|
|
super().__init__(2, actor_future_provider)
|
|
|
|
def with_common_critic_factory(self, critic_factory: CriticFactory) -> Self:
|
|
"""Specifies that the given factory shall be used for both critics.
|
|
|
|
:param critic_factory: the critic factory
|
|
:return: the builder
|
|
"""
|
|
for i in range(len(self._critic_factories)):
|
|
self._with_critic_factory(i, critic_factory)
|
|
return self
|
|
|
|
def with_common_critic_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
"""Makes both critics use the default, MLP-style architecture with the given parameters.
|
|
|
|
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:return: the builder
|
|
"""
|
|
for i in range(len(self._critic_factories)):
|
|
self._with_critic_factory_default(i, hidden_sizes, hidden_activation)
|
|
return self
|
|
|
|
def with_common_critic_factory_use_actor(self) -> Self:
|
|
"""Makes both critics reuse the actor's preprocessing network (parameter sharing)."""
|
|
for i in range(len(self._critic_factories)):
|
|
self._with_critic_factory_use_actor(i)
|
|
return self
|
|
|
|
def with_critic1_factory(self, critic_factory: CriticFactory) -> Self:
|
|
"""Specifies that the given factory shall be used for the first critic.
|
|
|
|
:param critic_factory: the critic factory
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory(0, critic_factory)
|
|
return self
|
|
|
|
def with_critic1_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
"""Makes the first critic use the default, MLP-style architecture with the given parameters.
|
|
|
|
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
|
|
return self
|
|
|
|
def with_critic1_factory_use_actor(self) -> Self:
|
|
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
|
|
return self._with_critic_factory_use_actor(0)
|
|
|
|
def with_critic2_factory(self, critic_factory: CriticFactory) -> Self:
|
|
"""Specifies that the given factory shall be used for the second critic.
|
|
|
|
:param critic_factory: the critic factory
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory(1, critic_factory)
|
|
return self
|
|
|
|
def with_critic2_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
|
|
hidden_activation: ModuleType = torch.nn.ReLU,
|
|
) -> Self:
|
|
"""Makes the second critic use the default, MLP-style architecture with the given parameters.
|
|
|
|
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
|
|
:param hidden_activation: the activation function to use for hidden layers
|
|
:return: the builder
|
|
"""
|
|
self._with_critic_factory_default(1, hidden_sizes, hidden_activation)
|
|
return self
|
|
|
|
def with_critic2_factory_use_actor(self) -> Self:
|
|
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
|
|
return self._with_critic_factory_use_actor(1)
|
|
|
|
|
|
class _BuilderMixinCriticEnsembleFactory:
|
|
def __init__(self) -> None:
|
|
self.critic_ensemble_factory: CriticEnsembleFactory | None = None
|
|
|
|
def with_critic_ensemble_factory(self, factory: CriticEnsembleFactory) -> Self:
|
|
"""Specifies that the given factory shall be used for the critic ensemble.
|
|
|
|
If unspecified, the default factory (:class:`CriticEnsembleFactoryDefault`) is used.
|
|
|
|
:param factory: the critic ensemble factory
|
|
:return: the builder
|
|
"""
|
|
self.critic_ensemble_factory = factory
|
|
return self
|
|
|
|
def with_critic_ensemble_factory_default(
|
|
self,
|
|
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
|
|
) -> Self:
|
|
"""Allows to customize the parameters of the default critic ensemble factory.
|
|
|
|
:param hidden_sizes: the sequence of sizes of hidden layers in the network architecture
|
|
:return: the builder
|
|
"""
|
|
self.critic_ensemble_factory = CriticEnsembleFactoryDefault(hidden_sizes)
|
|
return self
|
|
|
|
def _get_critic_ensemble_factory(self) -> CriticEnsembleFactory:
|
|
if self.critic_ensemble_factory is None:
|
|
return CriticEnsembleFactoryDefault()
|
|
else:
|
|
return self.critic_ensemble_factory
|
|
|
|
|
|
class PGExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
self._params: PGParams = PGParams()
|
|
self._env_config = None
|
|
|
|
def with_pg_params(self, params: PGParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return PGAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class A2CExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinSingleCriticCanUseActorFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
|
|
self._params: A2CParams = A2CParams()
|
|
self._env_config = None
|
|
|
|
def with_a2c_params(self, params: A2CParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return A2CAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class PPOExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinSingleCriticCanUseActorFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
|
|
self._params: PPOParams = PPOParams()
|
|
|
|
def with_ppo_params(self, params: PPOParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return PPOAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class NPGExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinSingleCriticCanUseActorFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
|
|
self._params: NPGParams = NPGParams()
|
|
|
|
def with_npg_params(self, params: NPGParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return NPGAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class TRPOExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinSingleCriticCanUseActorFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
|
|
self._params: TRPOParams = TRPOParams()
|
|
|
|
def with_trpo_params(self, params: TRPOParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return TRPOAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class DQNExperimentBuilder(
|
|
ExperimentBuilder,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
self._params: DQNParams = DQNParams()
|
|
self._model_factory: IntermediateModuleFactory = IntermediateModuleFactoryFromActorFactory(
|
|
ActorFactoryDefault(ContinuousActorType.UNSUPPORTED),
|
|
)
|
|
|
|
def with_dqn_params(self, params: DQNParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def with_model_factory(self, module_factory: IntermediateModuleFactory) -> Self:
|
|
self._model_factory = module_factory
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return DQNAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._model_factory,
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class IQNExperimentBuilder(ExperimentBuilder):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
self._params: IQNParams = IQNParams()
|
|
self._preprocess_network_factory: IntermediateModuleFactory = (
|
|
IntermediateModuleFactoryFromActorFactory(
|
|
ActorFactoryDefault(ContinuousActorType.UNSUPPORTED),
|
|
)
|
|
)
|
|
|
|
def with_iqn_params(self, params: IQNParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def with_preprocess_network_factory(self, module_factory: IntermediateModuleFactory) -> Self:
|
|
self._preprocess_network_factory = module_factory
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
model_factory = ImplicitQuantileNetworkFactory(
|
|
self._preprocess_network_factory,
|
|
hidden_sizes=self._params.hidden_sizes,
|
|
num_cosines=self._params.num_cosines,
|
|
)
|
|
return IQNAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
model_factory,
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class DDPGExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousDeterministic,
|
|
_BuilderMixinSingleCriticCanUseActorFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
|
|
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
|
|
self._params: DDPGParams = DDPGParams()
|
|
|
|
def with_ddpg_params(self, params: DDPGParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return DDPGAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class REDQExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinCriticEnsembleFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinCriticEnsembleFactory.__init__(self)
|
|
self._params: REDQParams = REDQParams()
|
|
|
|
def with_redq_params(self, params: REDQParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return REDQAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_ensemble_factory(),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class SACExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousGaussian,
|
|
_BuilderMixinDualCriticFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
|
_BuilderMixinDualCriticFactory.__init__(self, self)
|
|
self._params: SACParams = SACParams()
|
|
|
|
def with_sac_params(self, params: SACParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return SACAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_critic_factory(1),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class DiscreteSACExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory,
|
|
_BuilderMixinDualCriticFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory.__init__(self, ContinuousActorType.UNSUPPORTED)
|
|
_BuilderMixinDualCriticFactory.__init__(self, self)
|
|
self._params: DiscreteSACParams = DiscreteSACParams()
|
|
|
|
def with_sac_params(self, params: DiscreteSACParams) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return DiscreteSACAgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_critic_factory(1),
|
|
self._get_optim_factory(),
|
|
)
|
|
|
|
|
|
class TD3ExperimentBuilder(
|
|
ExperimentBuilder,
|
|
_BuilderMixinActorFactory_ContinuousDeterministic,
|
|
_BuilderMixinDualCriticFactory,
|
|
):
|
|
def __init__(
|
|
self,
|
|
env_factory: EnvFactory,
|
|
experiment_config: ExperimentConfig | None = None,
|
|
sampling_config: SamplingConfig | None = None,
|
|
):
|
|
super().__init__(env_factory, experiment_config, sampling_config)
|
|
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
|
|
_BuilderMixinDualCriticFactory.__init__(self, self)
|
|
self._params: TD3Params = TD3Params()
|
|
|
|
def with_td3_params(self, params: TD3Params) -> Self:
|
|
self._params = params
|
|
return self
|
|
|
|
def _create_agent_factory(self) -> AgentFactory:
|
|
return TD3AgentFactory(
|
|
self._params,
|
|
self._sampling_config,
|
|
self._get_actor_factory(),
|
|
self._get_critic_factory(0),
|
|
self._get_critic_factory(1),
|
|
self._get_optim_factory(),
|
|
)
|