Tianshou/examples/atari/atari_dqn.py
yingchengyang 5b49192a48
DQN Atari examples (#187)
This PR aims to provide the script of Atari DQN setting:
- A speedrun of PongNoFrameskip-v4 (finished, about half an hour in i7-8750 + GTX1060 with 1M environment steps)
- A general script for all atari game
Since we use multiple env for simulation, the result is slightly different from the original paper, but consider to be acceptable.

It also adds another parameter save_only_last_obs for replay buffer in order to save the memory.

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-30 05:48:09 +08:00

148 lines
5.6 KiB
Python

import os
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.discrete import DQN
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from atari_wrapper import wrap_deepmind
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='PongNoFrameskip-v4')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--eps_test', type=float, default=0.005)
parser.add_argument('--eps_train', type=float, default=1.)
parser.add_argument('--eps_train_final', type=float, default=0.05)
parser.add_argument('--buffer-size', type=int, default=100000)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--n_step', type=int, default=3)
parser.add_argument('--target_update_freq', type=int, default=500)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step_per_epoch', type=int, default=10000)
parser.add_argument('--collect_per_step', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--training_num', type=int, default=16)
parser.add_argument('--test_num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--frames_stack', type=int, default=4)
parser.add_argument('--resume_path', type=str, default=None)
parser.add_argument('--watch', default=False, action='store_true',
help='watch the play of pre-trained policy only')
return parser.parse_args()
def make_atari_env(args):
return wrap_deepmind(args.task, frame_stack=args.frames_stack)
def make_atari_env_watch(args):
return wrap_deepmind(args.task, frame_stack=args.frames_stack,
episode_life=False, clip_rewards=False)
def test_dqn(args=get_args()):
env = make_atari_env(args)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.env.action_space.shape or env.env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape: ", args.state_shape)
print("Actions shape: ", args.action_shape)
# make environments
train_envs = SubprocVectorEnv([lambda: make_atari_env(args)
for _ in range(args.training_num)])
test_envs = SubprocVectorEnv([lambda: make_atari_env_watch(args)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# define model
net = DQN(*args.state_shape,
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
# define policy
policy = DQNPolicy(net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
# replay buffer: `save_last_obs` and `stack_num` can be removed together
# when you have enough RAM
buffer = ReplayBuffer(args.buffer_size, ignore_obs_next=True,
save_last_obs=True, stack_num=args.frames_stack)
# collector
train_collector = Collector(policy, train_envs, buffer)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
if env.env.spec.reward_threshold:
return x >= env.spec.reward_threshold
elif 'Pong' in args.task:
return x >= 20
def train_fn(x):
# nature DQN setting, linear decay in the first 1M steps
now = x * args.collect_per_step * args.step_per_epoch
if now <= 1e6:
eps = args.eps_train - now / 1e6 * \
(args.eps_train - args.eps_train_final)
policy.set_eps(eps)
else:
policy.set_eps(args.eps_train_final)
print("set eps =", policy.eps)
def test_fn(x):
policy.set_eps(args.eps_test)
# watch agent's performance
def watch():
print("Testing agent ...")
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
pprint.pprint(result)
if args.watch:
watch()
exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * 4)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False)
pprint.pprint(result)
watch()
if __name__ == '__main__':
test_dqn(get_args())