* Created mixins for agent factories to reduce code duplication * Further factorised params & mixins for experiment factories * Additional parameter abstractions * Implement high-level MuJoCo TD3 example
37 lines
1.0 KiB
Python
37 lines
1.0 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch.optim import Adam
|
|
|
|
|
|
class OptimizerFactory(ABC):
|
|
@abstractmethod
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
|
pass
|
|
|
|
|
|
class TorchOptimizerFactory(OptimizerFactory):
|
|
def __init__(self, optim_class: Any, **kwargs):
|
|
self.optim_class = optim_class
|
|
self.kwargs = kwargs
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
|
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
|
|
|
|
|
|
class AdamOptimizerFactory(OptimizerFactory):
|
|
def __init__(self, betas=(0.9, 0.999), eps=1e-08, weight_decay=0):
|
|
self.weight_decay = weight_decay
|
|
self.eps = eps
|
|
self.betas = betas
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
|
|
return Adam(
|
|
module.parameters(),
|
|
lr=lr,
|
|
betas=self.betas,
|
|
eps=self.eps,
|
|
weight_decay=self.weight_decay,
|
|
)
|