Tianshou/test/offline/test_bcq.py
Michael Panchenko b900fdf6f2
Remove kwargs in policy init (#950)
Closes #947 

This removes all kwargs from all policy constructors. While doing that,
I also improved several names and added a whole lot of TODOs.

## Functional changes:

1. Added possibility to pass None as `critic2` and `critic2_optim`. In
fact, the default behavior then should cover the absolute majority of
cases
2. Added a function called `clone_optimizer` as a temporary measure to
support passing `critic2_optim=None`

## Breaking changes:

1. `action_space` is no longer optional. In fact, it already was
non-optional, as there was a ValueError in BasePolicy.init. So now
several examples were fixed to reflect that
2. `reward_normalization` removed from DDPG and children. It was never
allowed to pass it as `True` there, an error would have been raised in
`compute_n_step_reward`. Now I removed it from the interface
3. renamed `critic1` and similar to `critic`, in order to have uniform
interfaces. Note that the `critic` in DDPG was optional for the sole
reason that child classes used `critic1`. I removed this optionality
(DDPG can't do anything with `critic=None`)
4. Several renamings of fields (mostly private to public, so backwards
compatible)

## Additional changes: 
1. Removed type and default declaration from docstring. This kind of
duplication is really not necessary
2. Policy constructors are now only called using named arguments, not a
fragile mixture of positional and named as before
5. Minor beautifications in typing and code 
6. Generally shortened docstrings and made them uniform across all
policies (hopefully)

## Comment:

With these changes, several problems in tianshou's inheritance hierarchy
become more apparent. I tried highlighting them for future work.

---------

Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 08:57:03 -07:00

216 lines
7.5 KiB
Python

import argparse
import datetime
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import BCQPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import MLP, Net
from tianshou.utils.net.continuous import VAE, Critic, Perturbation
if __name__ == "__main__":
from gather_pendulum_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_pendulum_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Pendulum-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=1e-3)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=500)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=1 / 35)
parser.add_argument("--vae-hidden-sizes", type=int, nargs="*", default=[32, 32])
# default to 2 * action_dim
parser.add_argument("--latent_dim", type=int, default=None)
parser.add_argument("--gamma", default=0.99)
parser.add_argument("--tau", default=0.005)
# Weighting for Clipped Double Q-learning in BCQ
parser.add_argument("--lmbda", default=0.75)
# Max perturbation hyper-parameter for BCQ
parser.add_argument("--phi", default=0.05)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
parser.add_argument("--show-progress", action="store_true")
return parser.parse_known_args()[0]
def test_bcq(args=get_args()):
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
with open(args.load_buffer_name, "rb") as f:
buffer = pickle.load(f)
else:
buffer = gather_data()
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0] # float
if args.reward_threshold is None:
# too low?
default_reward_threshold = {"Pendulum-v0": -1100, "Pendulum-v1": -1100}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
args.state_dim = args.state_shape[0]
args.action_dim = args.action_shape[0]
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# perturbation network
net_a = MLP(
input_dim=args.state_dim + args.action_dim,
output_dim=args.action_dim,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = Perturbation(net_a, max_action=args.max_action, device=args.device, phi=args.phi).to(
args.device,
)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
# vae
# output_dim = 0, so the last Module in the encoder is ReLU
vae_encoder = MLP(
input_dim=args.state_dim + args.action_dim,
hidden_sizes=args.vae_hidden_sizes,
device=args.device,
)
if not args.latent_dim:
args.latent_dim = args.action_dim * 2
vae_decoder = MLP(
input_dim=args.state_dim + args.latent_dim,
output_dim=args.action_dim,
hidden_sizes=args.vae_hidden_sizes,
device=args.device,
)
vae = VAE(
vae_encoder,
vae_decoder,
hidden_dim=args.vae_hidden_sizes[-1],
latent_dim=args.latent_dim,
max_action=args.max_action,
device=args.device,
).to(args.device)
vae_optim = torch.optim.Adam(vae.parameters())
policy = BCQPolicy(
actor_perturbation=actor,
actor_perturbation_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
vae=vae,
vae_optim=vae_optim,
action_space=env.action_space,
device=args.device,
gamma=args.gamma,
tau=args.tau,
lmbda=args.lmbda,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
# buffer has been gathered
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_bcq'
log_path = os.path.join(args.logdir, args.task, "bcq", log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def watch():
policy.load_state_dict(
torch.load(os.path.join(log_path, "policy.pth"), map_location=torch.device("cpu")),
)
policy.eval()
collector = Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
# trainer
result = OfflineTrainer(
policy=policy,
buffer=buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
stop_fn=stop_fn,
logger=logger,
show_progress=args.show_progress,
).run()
assert stop_fn(result["best_reward"])
# Let's watch its performance!
if __name__ == "__main__":
pprint.pprint(result)
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_bcq()