Tianshou/test/offline/test_discrete_bcq.py
Jiayi Weng 5ecea2402e
Fix save_checkpoint_fn return value (#659)
- Fix save_checkpoint_fn return value to checkpoint_path;
- Fix wrong link in doc;
- Fix an off-by-one bug in trainer iterator.
2022-06-03 01:07:07 +08:00

177 lines
6.3 KiB
Python

import argparse
import os
import pickle
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DiscreteBCQPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor
if __name__ == "__main__":
from gather_cartpole_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_cartpole_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.001)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--unlikely-action-threshold", type=float, default=0.6)
parser.add_argument("--imitation-logits-penalty", type=float, default=0.01)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--update-per-epoch", type=int, default=2000)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--save-interval", type=int, default=4)
args = parser.parse_known_args()[0]
return args
def test_discrete_bcq(args=get_args()):
# envs
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 190}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, args.hidden_sizes[0], device=args.device)
policy_net = Actor(
net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device
).to(args.device)
imitation_net = Actor(
net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device
).to(args.device)
actor_critic = ActorCritic(policy_net, imitation_net)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
policy = DiscreteBCQPolicy(
policy_net,
imitation_net,
optim,
args.gamma,
args.n_step,
args.target_update_freq,
args.eps_test,
args.unlikely_action_threshold,
args.imitation_logits_penalty,
)
# buffer
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
buffer = pickle.load(open(args.load_buffer_name, "rb"))
else:
buffer = gather_data()
# collector
test_collector = Collector(policy, test_envs, exploration_noise=True)
log_path = os.path.join(args.logdir, args.task, "discrete_bcq")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
# Example: saving by epoch num
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save(
{
"model": policy.state_dict(),
"optim": optim.state_dict(),
}, ckpt_path
)
return ckpt_path
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, "checkpoint.pth")
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint["model"])
optim.load_state_dict(checkpoint["optim"])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
result = offline_trainer(
policy,
buffer,
test_collector,
args.epoch,
args.update_per_epoch,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn,
)
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
def test_discrete_bcq_resume(args=get_args()):
args.resume = True
test_discrete_bcq(args)
if __name__ == "__main__":
test_discrete_bcq(get_args())