Tianshou/examples/box2d/bipedal_hardcore_sac.py
n+e 5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00

163 lines
6.3 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import SACPolicy
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--auto_alpha', type=int, default=1)
parser.add_argument('--alpha_lr', type=float, default=3e-4)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', type=int, default=0)
parser.add_argument('--ignore-done', type=int, default=0)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--resume_path', type=str, default=None)
return parser.parse_args()
class EnvWrapper(object):
"""Env wrapper for reward scale, action repeat and action noise"""
def __init__(self, task, action_repeat=3, reward_scale=5, act_noise=0.0):
self._env = gym.make(task)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.act_noise = act_noise
def __getattr__(self, name):
return getattr(self._env, name)
def step(self, action):
# add action noise
action += self.act_noise * (-2 * np.random.random(4) + 1)
r = 0.0
for _ in range(self.action_repeat):
obs_, reward_, done_, info_ = self._env.step(action)
# remove done reward penalty
if done_:
break
r = r + reward_
# scale reward
return obs_, self.reward_scale * r, done_, info_
def test_sac_bipedal(args=get_args()):
env = EnvWrapper(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
train_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([lambda: EnvWrapper(args.task, reward_scale=1)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
net_a, args.action_shape, args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net_c1, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic2 = Critic(net_c2, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
action_range=[env.action_space.low[0], env.action_space.high[0]],
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
estimation_step=args.n_step)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer,
test_in_train=False)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
if __name__ == '__main__':
test_sac_bipedal()