Cherry-pick from #200 - update the function signature - format code-style - move _compile into separate functions - fix a bug in to_torch and to_numpy (Batch) - remove None in action_range In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
142 lines
4.4 KiB
Python
142 lines
4.4 KiB
Python
import numpy as np
|
|
from numba import njit
|
|
from typing import Union, Optional
|
|
|
|
|
|
class SegmentTree:
|
|
"""Implementation of Segment Tree.
|
|
|
|
The segment tree stores an array ``arr`` with size ``n``. It supports value
|
|
update and fast query of the sum for the interval ``[left, right)`` in
|
|
O(log n) time. The detailed procedure is as follows:
|
|
|
|
1. Pad the array to have length of power of 2, so that leaf nodes in the \
|
|
segment tree have the same depth.
|
|
2. Store the segment tree in a binary heap.
|
|
|
|
:param int size: the size of segment tree.
|
|
"""
|
|
|
|
def __init__(self, size: int) -> None:
|
|
bound = 1
|
|
while bound < size:
|
|
bound *= 2
|
|
self._size = size
|
|
self._bound = bound
|
|
self._value = np.zeros([bound * 2])
|
|
self._compile()
|
|
|
|
def __len__(self) -> int:
|
|
return self._size
|
|
|
|
def __getitem__(
|
|
self, index: Union[int, np.ndarray]
|
|
) -> Union[float, np.ndarray]:
|
|
"""Return self[index]."""
|
|
return self._value[index + self._bound]
|
|
|
|
def __setitem__(
|
|
self, index: Union[int, np.ndarray], value: Union[float, np.ndarray]
|
|
) -> None:
|
|
"""Update values in segment tree.
|
|
|
|
Duplicate values in ``index`` are handled by numpy: later index
|
|
overwrites previous ones.
|
|
::
|
|
|
|
>>> a = np.array([1, 2, 3, 4])
|
|
>>> a[[0, 1, 0, 1]] = [4, 5, 6, 7]
|
|
>>> print(a)
|
|
[6 7 3 4]
|
|
"""
|
|
if isinstance(index, int):
|
|
index, value = np.array([index]), np.array([value])
|
|
assert np.all(0 <= index) and np.all(index < self._size)
|
|
_setitem(self._value, index + self._bound, value)
|
|
|
|
def reduce(self, start: int = 0, end: Optional[int] = None) -> float:
|
|
"""Return operation(value[start:end])."""
|
|
if start == 0 and end is None:
|
|
return self._value[1]
|
|
if end is None:
|
|
end = self._size
|
|
if end < 0:
|
|
end += self._size
|
|
return _reduce(self._value, start + self._bound - 1, end + self._bound)
|
|
|
|
def get_prefix_sum_idx(
|
|
self, value: Union[float, np.ndarray]
|
|
) -> Union[int, np.ndarray]:
|
|
r"""Find the index with given value.
|
|
|
|
Return the minimum index for each ``v`` in ``value`` so that
|
|
:math:`v \le \mathrm{sums}_i`, where
|
|
:math:`\mathrm{sums}_i = \sum_{j = 0}^{i} \mathrm{arr}_j`.
|
|
|
|
.. warning::
|
|
|
|
Please make sure all of the values inside the segment tree are
|
|
non-negative when using this function.
|
|
"""
|
|
assert np.all(value >= 0.0) and np.all(value < self._value[1])
|
|
single = False
|
|
if not isinstance(value, np.ndarray):
|
|
value = np.array([value])
|
|
single = True
|
|
index = _get_prefix_sum_idx(value, self._bound, self._value)
|
|
return index.item() if single else index
|
|
|
|
def _compile(self) -> None:
|
|
f64 = np.array([0, 1], dtype=np.float64)
|
|
f32 = np.array([0, 1], dtype=np.float32)
|
|
i64 = np.array([0, 1], dtype=np.int64)
|
|
_setitem(f64, i64, f64)
|
|
_setitem(f64, i64, f32)
|
|
_reduce(f64, 0, 1)
|
|
_get_prefix_sum_idx(f64, 1, f64)
|
|
_get_prefix_sum_idx(f32, 1, f64)
|
|
|
|
|
|
@njit
|
|
def _setitem(tree: np.ndarray, index: np.ndarray, value: np.ndarray) -> None:
|
|
"""Numba version, 4x faster: 0.1 -> 0.024."""
|
|
tree[index] = value
|
|
while index[0] > 1:
|
|
index //= 2
|
|
tree[index] = tree[index * 2] + tree[index * 2 + 1]
|
|
|
|
|
|
@njit
|
|
def _reduce(tree: np.ndarray, start: int, end: int) -> float:
|
|
"""Numba version, 2x faster: 0.009 -> 0.005."""
|
|
# nodes in (start, end) should be aggregated
|
|
result = 0.0
|
|
while end - start > 1: # (start, end) interval is not empty
|
|
if start % 2 == 0:
|
|
result += tree[start + 1]
|
|
start //= 2
|
|
if end % 2 == 1:
|
|
result += tree[end - 1]
|
|
end //= 2
|
|
return result
|
|
|
|
|
|
@njit
|
|
def _get_prefix_sum_idx(
|
|
value: np.ndarray, bound: int, sums: np.ndarray
|
|
) -> np.ndarray:
|
|
"""Numba version (v0.51), 5x speed up with size=100000 and bsz=64.
|
|
|
|
vectorized np: 0.0923 (numpy best) -> 0.024 (now)
|
|
for-loop: 0.2914 -> 0.019 (but not so stable)
|
|
"""
|
|
index = np.ones(value.shape, dtype=np.int64)
|
|
while index[0] < bound:
|
|
index *= 2
|
|
lsons = sums[index]
|
|
direct = lsons < value
|
|
value -= lsons * direct
|
|
index += direct
|
|
index -= bound
|
|
return index
|