- Added nbqa to pyproject.toml - Resolved mypy issues on notebooks and related files - Conducting ruff checks on notebooks - Add DataclassPPrintMixin for better stats representation - Improved Notebooks wording and explanations Resolve: #1004 Related to #974
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
import contextlib
|
|
from collections.abc import Callable
|
|
from typing import Any
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
|
|
from tianshou.env.utils import ENV_TYPE, gym_new_venv_step_type
|
|
from tianshou.env.worker import EnvWorker
|
|
|
|
with contextlib.suppress(ImportError):
|
|
import ray
|
|
|
|
|
|
class _SetAttrWrapper(gym.Wrapper):
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
setattr(self.env.unwrapped, key, value)
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
return getattr(self.env, key)
|
|
|
|
|
|
class RayEnvWorker(EnvWorker):
|
|
"""Ray worker used in RayVectorEnv."""
|
|
|
|
def __init__(
|
|
self,
|
|
env_fn: Callable[[], ENV_TYPE],
|
|
) -> None: # TODO: is ENV_TYPE actually correct?
|
|
self.env = ray.remote(_SetAttrWrapper).options(num_cpus=0).remote(env_fn()) # type: ignore
|
|
super().__init__(env_fn)
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
return ray.get(self.env.get_env_attr.remote(key))
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
ray.get(self.env.set_env_attr.remote(key, value))
|
|
|
|
def reset(self, **kwargs: Any) -> Any:
|
|
if "seed" in kwargs:
|
|
super().seed(kwargs["seed"])
|
|
return ray.get(self.env.reset.remote(**kwargs))
|
|
|
|
@staticmethod
|
|
def wait( # type: ignore
|
|
workers: list["RayEnvWorker"],
|
|
wait_num: int,
|
|
timeout: float | None = None,
|
|
) -> list["RayEnvWorker"]:
|
|
results = [x.result for x in workers]
|
|
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
|
|
return [workers[results.index(result)] for result in ready_results]
|
|
|
|
def send(self, action: np.ndarray | None, **kwargs: Any) -> None:
|
|
# self.result is actually a handle
|
|
if action is None:
|
|
self.result = self.env.reset.remote(**kwargs)
|
|
else:
|
|
self.result = self.env.step.remote(action)
|
|
|
|
def recv(self) -> gym_new_venv_step_type:
|
|
return ray.get(self.result) # type: ignore
|
|
|
|
def seed(self, seed: int | None = None) -> list[int] | None:
|
|
super().seed(seed)
|
|
try:
|
|
return ray.get(self.env.seed.remote(seed))
|
|
except (AttributeError, NotImplementedError):
|
|
self.env.reset.remote(seed=seed)
|
|
return None
|
|
|
|
def render(self, **kwargs: Any) -> Any:
|
|
return ray.get(self.env.render.remote(**kwargs))
|
|
|
|
def close_env(self) -> None:
|
|
ray.get(self.env.close.remote())
|