Tianshou/examples/atari/atari_dqn.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

262 lines
9.2 KiB
Python

import argparse
import datetime
import os
import pprint
import sys
import numpy as np
import torch
from atari_network import DQN
from atari_wrapper import make_atari_env
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import DQNPolicy
from tianshou.policy.modelbased.icm import ICMPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.discrete import IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--scale-obs", type=int, default=0)
parser.add_argument("--eps-test", type=float, default=0.005)
parser.add_argument("--eps-train", type=float, default=1.0)
parser.add_argument("--eps-train-final", type=float, default=0.05)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--lr", type=float, default=0.0001)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=500)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--frames-stack", type=int, default=4)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
parser.add_argument("--save-buffer-name", type=str, default=None)
parser.add_argument(
"--icm-lr-scale",
type=float,
default=0.0,
help="use intrinsic curiosity module with this lr scale",
)
parser.add_argument(
"--icm-reward-scale",
type=float,
default=0.01,
help="scaling factor for intrinsic curiosity reward",
)
parser.add_argument(
"--icm-forward-loss-weight",
type=float,
default=0.2,
help="weight for the forward model loss in ICM",
)
return parser.parse_args()
def test_dqn(args=get_args()):
env, train_envs, test_envs = make_atari_env(
args.task,
args.seed,
args.training_num,
args.test_num,
scale=args.scale_obs,
frame_stack=args.frames_stack,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# define model
net = DQN(*args.state_shape, args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
# define policy
policy = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq,
)
if args.icm_lr_scale > 0:
feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True)
action_dim = np.prod(args.action_shape)
feature_dim = feature_net.output_dim
icm_net = IntrinsicCuriosityModule(
feature_net.net,
feature_dim,
action_dim,
hidden_sizes=[512],
device=args.device,
)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy,
icm_net,
icm_optim,
args.icm_lr_scale,
args.icm_reward_scale,
args.icm_forward_loss_weight,
).to(args.device)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# replay buffer: `save_last_obs` and `stack_num` can be removed together
# when you have enough RAM
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
# collector
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "dqn_icm" if args.icm_lr_scale > 0 else "dqn"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
if "Pong" in args.task:
return mean_rewards >= 20
return False
def train_fn(epoch, env_step):
# nature DQN setting, linear decay in the first 1M steps
if env_step <= 1e6:
eps = args.eps_train - env_step / 1e6 * (args.eps_train - args.eps_train_final)
else:
eps = args.eps_train_final
policy.set_eps(eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save({"model": policy.state_dict()}, ckpt_path)
return ckpt_path
# watch agent's performance
def watch():
print("Setup test envs ...")
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
if args.save_buffer_name:
print(f"Generate buffer with size {args.buffer_size}")
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(test_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
result = collector.collect(n_step=args.buffer_size)
print(f"Save buffer into {args.save_buffer_name}")
# Unfortunately, pickle will cause oom with 1M buffer size
buffer.save_hdf5(args.save_buffer_name)
else:
print("Testing agent ...")
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rew = result["rews"].mean()
print(f"Mean reward (over {result['n/ep']} episodes): {rew}")
if args.watch:
watch()
sys.exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * args.training_num)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
resume_from_log=args.resume_id is not None,
save_checkpoint_fn=save_checkpoint_fn,
).run()
pprint.pprint(result)
watch()
if __name__ == "__main__":
test_dqn(get_args())