Tianshou/examples/atari/atari_network.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

223 lines
6.9 KiB
Python

from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
import numpy as np
import torch
from torch import nn
from tianshou.utils.net.discrete import NoisyLinear
def layer_init(layer: nn.Module, std: float = np.sqrt(2), bias_const: float = 0.0) -> nn.Module:
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
def scale_obs(module: type[nn.Module], denom: float = 255.0) -> type[nn.Module]:
class scaled_module(module):
def forward(
self,
obs: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, Any]:
if info is None:
info = {}
return super().forward(obs / denom, state, info)
return scaled_module
class DQN(nn.Module):
"""Reference: Human-level control through deep reinforcement learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
device: Union[str, int, torch.device] = "cpu",
features_only: bool = False,
output_dim: Optional[int] = None,
layer_init: Callable[[nn.Module], nn.Module] = lambda x: x,
) -> None:
super().__init__()
self.device = device
self.net = nn.Sequential(
layer_init(nn.Conv2d(c, 32, kernel_size=8, stride=4)),
nn.ReLU(inplace=True),
layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)),
nn.ReLU(inplace=True),
layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)),
nn.ReLU(inplace=True),
nn.Flatten(),
)
with torch.no_grad():
self.output_dim = int(np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:]))
if not features_only:
self.net = nn.Sequential(
self.net,
layer_init(nn.Linear(self.output_dim, 512)),
nn.ReLU(inplace=True),
layer_init(nn.Linear(512, int(np.prod(action_shape)))),
)
self.output_dim = np.prod(action_shape)
elif output_dim is not None:
self.net = nn.Sequential(
self.net,
layer_init(nn.Linear(self.output_dim, output_dim)),
nn.ReLU(inplace=True),
)
self.output_dim = output_dim
def forward(
self,
obs: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: s -> Q(s, \*)."""
if info is None:
info = {}
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
return self.net(obs), state
class C51(DQN):
"""Reference: A distributional perspective on reinforcement learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
num_atoms: int = 51,
device: Union[str, int, torch.device] = "cpu",
) -> None:
self.action_num = np.prod(action_shape)
super().__init__(c, h, w, [self.action_num * num_atoms], device)
self.num_atoms = num_atoms
def forward(
self,
obs: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
if info is None:
info = {}
obs, state = super().forward(obs)
obs = obs.view(-1, self.num_atoms).softmax(dim=-1)
obs = obs.view(-1, self.action_num, self.num_atoms)
return obs, state
class Rainbow(DQN):
"""Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
num_atoms: int = 51,
noisy_std: float = 0.5,
device: Union[str, int, torch.device] = "cpu",
is_dueling: bool = True,
is_noisy: bool = True,
) -> None:
super().__init__(c, h, w, action_shape, device, features_only=True)
self.action_num = np.prod(action_shape)
self.num_atoms = num_atoms
def linear(x, y):
if is_noisy:
return NoisyLinear(x, y, noisy_std)
return nn.Linear(x, y)
self.Q = nn.Sequential(
linear(self.output_dim, 512),
nn.ReLU(inplace=True),
linear(512, self.action_num * self.num_atoms),
)
self._is_dueling = is_dueling
if self._is_dueling:
self.V = nn.Sequential(
linear(self.output_dim, 512),
nn.ReLU(inplace=True),
linear(512, self.num_atoms),
)
self.output_dim = self.action_num * self.num_atoms
def forward(
self,
obs: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
if info is None:
info = {}
obs, state = super().forward(obs)
q = self.Q(obs)
q = q.view(-1, self.action_num, self.num_atoms)
if self._is_dueling:
v = self.V(obs)
v = v.view(-1, 1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v
else:
logits = q
probs = logits.softmax(dim=2)
return probs, state
class QRDQN(DQN):
"""Reference: Distributional Reinforcement Learning with Quantile Regression.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
action_shape: Sequence[int],
num_quantiles: int = 200,
device: Union[str, int, torch.device] = "cpu",
) -> None:
self.action_num = np.prod(action_shape)
super().__init__(c, h, w, [self.action_num * num_quantiles], device)
self.num_quantiles = num_quantiles
def forward(
self,
obs: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, Any]:
r"""Mapping: x -> Z(x, \*)."""
if info is None:
info = {}
obs, state = super().forward(obs)
obs = obs.view(-1, self.action_num, self.num_quantiles)
return obs, state