Preparation for #914 and #920 Changes formatting to ruff and black. Remove python 3.8 ## Additional Changes - Removed flake8 dependencies - Adjusted pre-commit. Now CI and Make use pre-commit, reducing the duplication of linting calls - Removed check-docstyle option (ruff is doing that) - Merged format and lint. In CI the format-lint step fails if any changes are done, so it fulfills the lint functionality. --------- Co-authored-by: Jiayi Weng <jiayi@openai.com>
		
			
				
	
	
		
			223 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections.abc import Sequence
 | |
| from typing import Any, Callable, Optional, Union
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch import nn
 | |
| 
 | |
| from tianshou.utils.net.discrete import NoisyLinear
 | |
| 
 | |
| 
 | |
| def layer_init(layer: nn.Module, std: float = np.sqrt(2), bias_const: float = 0.0) -> nn.Module:
 | |
|     torch.nn.init.orthogonal_(layer.weight, std)
 | |
|     torch.nn.init.constant_(layer.bias, bias_const)
 | |
|     return layer
 | |
| 
 | |
| 
 | |
| def scale_obs(module: type[nn.Module], denom: float = 255.0) -> type[nn.Module]:
 | |
|     class scaled_module(module):
 | |
|         def forward(
 | |
|             self,
 | |
|             obs: Union[np.ndarray, torch.Tensor],
 | |
|             state: Optional[Any] = None,
 | |
|             info: Optional[dict[str, Any]] = None,
 | |
|         ) -> tuple[torch.Tensor, Any]:
 | |
|             if info is None:
 | |
|                 info = {}
 | |
|             return super().forward(obs / denom, state, info)
 | |
| 
 | |
|     return scaled_module
 | |
| 
 | |
| 
 | |
| class DQN(nn.Module):
 | |
|     """Reference: Human-level control through deep reinforcement learning.
 | |
| 
 | |
|     For advanced usage (how to customize the network), please refer to
 | |
|     :ref:`build_the_network`.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         c: int,
 | |
|         h: int,
 | |
|         w: int,
 | |
|         action_shape: Sequence[int],
 | |
|         device: Union[str, int, torch.device] = "cpu",
 | |
|         features_only: bool = False,
 | |
|         output_dim: Optional[int] = None,
 | |
|         layer_init: Callable[[nn.Module], nn.Module] = lambda x: x,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.device = device
 | |
|         self.net = nn.Sequential(
 | |
|             layer_init(nn.Conv2d(c, 32, kernel_size=8, stride=4)),
 | |
|             nn.ReLU(inplace=True),
 | |
|             layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)),
 | |
|             nn.ReLU(inplace=True),
 | |
|             layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)),
 | |
|             nn.ReLU(inplace=True),
 | |
|             nn.Flatten(),
 | |
|         )
 | |
|         with torch.no_grad():
 | |
|             self.output_dim = int(np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:]))
 | |
|         if not features_only:
 | |
|             self.net = nn.Sequential(
 | |
|                 self.net,
 | |
|                 layer_init(nn.Linear(self.output_dim, 512)),
 | |
|                 nn.ReLU(inplace=True),
 | |
|                 layer_init(nn.Linear(512, int(np.prod(action_shape)))),
 | |
|             )
 | |
|             self.output_dim = np.prod(action_shape)
 | |
|         elif output_dim is not None:
 | |
|             self.net = nn.Sequential(
 | |
|                 self.net,
 | |
|                 layer_init(nn.Linear(self.output_dim, output_dim)),
 | |
|                 nn.ReLU(inplace=True),
 | |
|             )
 | |
|             self.output_dim = output_dim
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         obs: Union[np.ndarray, torch.Tensor],
 | |
|         state: Optional[Any] = None,
 | |
|         info: Optional[dict[str, Any]] = None,
 | |
|     ) -> tuple[torch.Tensor, Any]:
 | |
|         r"""Mapping: s -> Q(s, \*)."""
 | |
|         if info is None:
 | |
|             info = {}
 | |
|         obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
 | |
|         return self.net(obs), state
 | |
| 
 | |
| 
 | |
| class C51(DQN):
 | |
|     """Reference: A distributional perspective on reinforcement learning.
 | |
| 
 | |
|     For advanced usage (how to customize the network), please refer to
 | |
|     :ref:`build_the_network`.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         c: int,
 | |
|         h: int,
 | |
|         w: int,
 | |
|         action_shape: Sequence[int],
 | |
|         num_atoms: int = 51,
 | |
|         device: Union[str, int, torch.device] = "cpu",
 | |
|     ) -> None:
 | |
|         self.action_num = np.prod(action_shape)
 | |
|         super().__init__(c, h, w, [self.action_num * num_atoms], device)
 | |
|         self.num_atoms = num_atoms
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         obs: Union[np.ndarray, torch.Tensor],
 | |
|         state: Optional[Any] = None,
 | |
|         info: Optional[dict[str, Any]] = None,
 | |
|     ) -> tuple[torch.Tensor, Any]:
 | |
|         r"""Mapping: x -> Z(x, \*)."""
 | |
|         if info is None:
 | |
|             info = {}
 | |
|         obs, state = super().forward(obs)
 | |
|         obs = obs.view(-1, self.num_atoms).softmax(dim=-1)
 | |
|         obs = obs.view(-1, self.action_num, self.num_atoms)
 | |
|         return obs, state
 | |
| 
 | |
| 
 | |
| class Rainbow(DQN):
 | |
|     """Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning.
 | |
| 
 | |
|     For advanced usage (how to customize the network), please refer to
 | |
|     :ref:`build_the_network`.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         c: int,
 | |
|         h: int,
 | |
|         w: int,
 | |
|         action_shape: Sequence[int],
 | |
|         num_atoms: int = 51,
 | |
|         noisy_std: float = 0.5,
 | |
|         device: Union[str, int, torch.device] = "cpu",
 | |
|         is_dueling: bool = True,
 | |
|         is_noisy: bool = True,
 | |
|     ) -> None:
 | |
|         super().__init__(c, h, w, action_shape, device, features_only=True)
 | |
|         self.action_num = np.prod(action_shape)
 | |
|         self.num_atoms = num_atoms
 | |
| 
 | |
|         def linear(x, y):
 | |
|             if is_noisy:
 | |
|                 return NoisyLinear(x, y, noisy_std)
 | |
|             return nn.Linear(x, y)
 | |
| 
 | |
|         self.Q = nn.Sequential(
 | |
|             linear(self.output_dim, 512),
 | |
|             nn.ReLU(inplace=True),
 | |
|             linear(512, self.action_num * self.num_atoms),
 | |
|         )
 | |
|         self._is_dueling = is_dueling
 | |
|         if self._is_dueling:
 | |
|             self.V = nn.Sequential(
 | |
|                 linear(self.output_dim, 512),
 | |
|                 nn.ReLU(inplace=True),
 | |
|                 linear(512, self.num_atoms),
 | |
|             )
 | |
|         self.output_dim = self.action_num * self.num_atoms
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         obs: Union[np.ndarray, torch.Tensor],
 | |
|         state: Optional[Any] = None,
 | |
|         info: Optional[dict[str, Any]] = None,
 | |
|     ) -> tuple[torch.Tensor, Any]:
 | |
|         r"""Mapping: x -> Z(x, \*)."""
 | |
|         if info is None:
 | |
|             info = {}
 | |
|         obs, state = super().forward(obs)
 | |
|         q = self.Q(obs)
 | |
|         q = q.view(-1, self.action_num, self.num_atoms)
 | |
|         if self._is_dueling:
 | |
|             v = self.V(obs)
 | |
|             v = v.view(-1, 1, self.num_atoms)
 | |
|             logits = q - q.mean(dim=1, keepdim=True) + v
 | |
|         else:
 | |
|             logits = q
 | |
|         probs = logits.softmax(dim=2)
 | |
|         return probs, state
 | |
| 
 | |
| 
 | |
| class QRDQN(DQN):
 | |
|     """Reference: Distributional Reinforcement Learning with Quantile Regression.
 | |
| 
 | |
|     For advanced usage (how to customize the network), please refer to
 | |
|     :ref:`build_the_network`.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         c: int,
 | |
|         h: int,
 | |
|         w: int,
 | |
|         action_shape: Sequence[int],
 | |
|         num_quantiles: int = 200,
 | |
|         device: Union[str, int, torch.device] = "cpu",
 | |
|     ) -> None:
 | |
|         self.action_num = np.prod(action_shape)
 | |
|         super().__init__(c, h, w, [self.action_num * num_quantiles], device)
 | |
|         self.num_quantiles = num_quantiles
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         obs: Union[np.ndarray, torch.Tensor],
 | |
|         state: Optional[Any] = None,
 | |
|         info: Optional[dict[str, Any]] = None,
 | |
|     ) -> tuple[torch.Tensor, Any]:
 | |
|         r"""Mapping: x -> Z(x, \*)."""
 | |
|         if info is None:
 | |
|             info = {}
 | |
|         obs, state = super().forward(obs)
 | |
|         obs = obs.view(-1, self.action_num, self.num_quantiles)
 | |
|         return obs, state
 |