Preparation for #914 and #920 Changes formatting to ruff and black. Remove python 3.8 ## Additional Changes - Removed flake8 dependencies - Adjusted pre-commit. Now CI and Make use pre-commit, reducing the duplication of linting calls - Removed check-docstyle option (ruff is doing that) - Merged format and lint. In CI the format-lint step fails if any changes are done, so it fulfills the lint functionality. --------- Co-authored-by: Jiayi Weng <jiayi@openai.com>
220 lines
7.3 KiB
Python
220 lines
7.3 KiB
Python
import random
|
|
import time
|
|
from copy import deepcopy
|
|
|
|
import gymnasium as gym
|
|
import networkx as nx
|
|
import numpy as np
|
|
from gymnasium.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
|
|
|
|
|
|
class MyTestEnv(gym.Env):
|
|
"""A task for "going right". The task is to go right ``size`` steps."""
|
|
|
|
def __init__(
|
|
self,
|
|
size,
|
|
sleep=0,
|
|
dict_state=False,
|
|
recurse_state=False,
|
|
ma_rew=0,
|
|
multidiscrete_action=False,
|
|
random_sleep=False,
|
|
array_state=False,
|
|
):
|
|
assert (
|
|
dict_state + recurse_state + array_state <= 1
|
|
), "dict_state / recurse_state / array_state can be only one true"
|
|
self.size = size
|
|
self.sleep = sleep
|
|
self.random_sleep = random_sleep
|
|
self.dict_state = dict_state
|
|
self.recurse_state = recurse_state
|
|
self.array_state = array_state
|
|
self.ma_rew = ma_rew
|
|
self._md_action = multidiscrete_action
|
|
# how many steps this env has stepped
|
|
self.steps = 0
|
|
if dict_state:
|
|
self.observation_space = Dict(
|
|
{
|
|
"index": Box(shape=(1,), low=0, high=size - 1),
|
|
"rand": Box(shape=(1,), low=0, high=1, dtype=np.float64),
|
|
},
|
|
)
|
|
elif recurse_state:
|
|
self.observation_space = Dict(
|
|
{
|
|
"index": Box(shape=(1,), low=0, high=size - 1),
|
|
"dict": Dict(
|
|
{
|
|
"tuple": Tuple(
|
|
(
|
|
Discrete(2),
|
|
Box(shape=(2,), low=0, high=1, dtype=np.float64),
|
|
),
|
|
),
|
|
"rand": Box(shape=(1, 2), low=0, high=1, dtype=np.float64),
|
|
},
|
|
),
|
|
},
|
|
)
|
|
elif array_state:
|
|
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
|
|
else:
|
|
self.observation_space = Box(shape=(1,), low=0, high=size - 1)
|
|
if multidiscrete_action:
|
|
self.action_space = MultiDiscrete([2, 2])
|
|
else:
|
|
self.action_space = Discrete(2)
|
|
self.terminated = False
|
|
self.index = 0
|
|
|
|
def reset(self, seed=None, options=None):
|
|
if options is None:
|
|
options = {"state": 0}
|
|
super().reset(seed=seed)
|
|
self.terminated = False
|
|
self.do_sleep()
|
|
self.index = options["state"]
|
|
return self._get_state(), {"key": 1, "env": self}
|
|
|
|
def _get_reward(self):
|
|
"""Generate a non-scalar reward if ma_rew is True."""
|
|
end_flag = int(self.terminated)
|
|
if self.ma_rew > 0:
|
|
return [end_flag] * self.ma_rew
|
|
return end_flag
|
|
|
|
def _get_state(self):
|
|
"""Generate state(observation) of MyTestEnv."""
|
|
if self.dict_state:
|
|
return {
|
|
"index": np.array([self.index], dtype=np.float32),
|
|
"rand": self.np_random.random(1),
|
|
}
|
|
if self.recurse_state:
|
|
return {
|
|
"index": np.array([self.index], dtype=np.float32),
|
|
"dict": {
|
|
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
|
|
"rand": self.np_random.random((1, 2)),
|
|
},
|
|
}
|
|
if self.array_state:
|
|
img = np.zeros([4, 84, 84], int)
|
|
img[3, np.arange(84), np.arange(84)] = self.index
|
|
img[2, np.arange(84)] = self.index
|
|
img[1, :, np.arange(84)] = self.index
|
|
img[0] = self.index
|
|
return img
|
|
return np.array([self.index], dtype=np.float32)
|
|
|
|
def do_sleep(self):
|
|
if self.sleep > 0:
|
|
sleep_time = random.random() if self.random_sleep else 1
|
|
sleep_time *= self.sleep
|
|
time.sleep(sleep_time)
|
|
|
|
def step(self, action):
|
|
self.steps += 1
|
|
if self._md_action:
|
|
action = action[0]
|
|
if self.terminated:
|
|
raise ValueError("step after done !!!")
|
|
self.do_sleep()
|
|
if self.index == self.size:
|
|
self.terminated = True
|
|
return self._get_state(), self._get_reward(), self.terminated, False, {}
|
|
if action == 0:
|
|
self.index = max(self.index - 1, 0)
|
|
return (
|
|
self._get_state(),
|
|
self._get_reward(),
|
|
self.terminated,
|
|
False,
|
|
{"key": 1, "env": self} if self.dict_state else {},
|
|
)
|
|
if action == 1:
|
|
self.index += 1
|
|
self.terminated = self.index == self.size
|
|
return (
|
|
self._get_state(),
|
|
self._get_reward(),
|
|
self.terminated,
|
|
False,
|
|
{"key": 1, "env": self},
|
|
)
|
|
return None
|
|
|
|
|
|
class NXEnv(gym.Env):
|
|
def __init__(self, size, obs_type, feat_dim=32):
|
|
self.size = size
|
|
self.feat_dim = feat_dim
|
|
self.graph = nx.Graph()
|
|
self.graph.add_nodes_from(list(range(size)))
|
|
assert obs_type in ["array", "object"]
|
|
self.obs_type = obs_type
|
|
|
|
def _encode_obs(self):
|
|
if self.obs_type == "array":
|
|
return np.stack([v["data"] for v in self.graph._node.values()])
|
|
return deepcopy(self.graph)
|
|
|
|
def reset(self):
|
|
graph_state = np.random.rand(self.size, self.feat_dim)
|
|
for i in range(self.size):
|
|
self.graph.nodes[i]["data"] = graph_state[i]
|
|
return self._encode_obs(), {}
|
|
|
|
def step(self, action):
|
|
next_graph_state = np.random.rand(self.size, self.feat_dim)
|
|
for i in range(self.size):
|
|
self.graph.nodes[i]["data"] = next_graph_state[i]
|
|
return self._encode_obs(), 1.0, 0, 0, {}
|
|
|
|
|
|
class MyGoalEnv(MyTestEnv):
|
|
def __init__(self, *args, **kwargs):
|
|
assert (
|
|
kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0
|
|
), "dict_state / recurse_state not supported"
|
|
super().__init__(*args, **kwargs)
|
|
obs, _ = super().reset(options={"state": 0})
|
|
obs, _, _, _, _ = super().step(1)
|
|
self._goal = obs * self.size
|
|
super_obsv = self.observation_space
|
|
self.observation_space = gym.spaces.Dict(
|
|
{
|
|
"observation": super_obsv,
|
|
"achieved_goal": super_obsv,
|
|
"desired_goal": super_obsv,
|
|
},
|
|
)
|
|
|
|
def reset(self, *args, **kwargs):
|
|
obs, info = super().reset(*args, **kwargs)
|
|
new_obs = {"observation": obs, "achieved_goal": obs, "desired_goal": self._goal}
|
|
return new_obs, info
|
|
|
|
def step(self, *args, **kwargs):
|
|
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
|
|
new_obs_next = {
|
|
"observation": obs_next,
|
|
"achieved_goal": obs_next,
|
|
"desired_goal": self._goal,
|
|
}
|
|
return new_obs_next, rew, terminated, truncated, info
|
|
|
|
def compute_reward_fn(
|
|
self,
|
|
achieved_goal: np.ndarray,
|
|
desired_goal: np.ndarray,
|
|
info: dict,
|
|
) -> np.ndarray:
|
|
axis = -1
|
|
if self.array_state:
|
|
axis = (-3, -2, -1)
|
|
return (achieved_goal == desired_goal).all(axis=axis)
|