Tianshou/test/base/env.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

220 lines
7.3 KiB
Python

import random
import time
from copy import deepcopy
import gymnasium as gym
import networkx as nx
import numpy as np
from gymnasium.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
class MyTestEnv(gym.Env):
"""A task for "going right". The task is to go right ``size`` steps."""
def __init__(
self,
size,
sleep=0,
dict_state=False,
recurse_state=False,
ma_rew=0,
multidiscrete_action=False,
random_sleep=False,
array_state=False,
):
assert (
dict_state + recurse_state + array_state <= 1
), "dict_state / recurse_state / array_state can be only one true"
self.size = size
self.sleep = sleep
self.random_sleep = random_sleep
self.dict_state = dict_state
self.recurse_state = recurse_state
self.array_state = array_state
self.ma_rew = ma_rew
self._md_action = multidiscrete_action
# how many steps this env has stepped
self.steps = 0
if dict_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"rand": Box(shape=(1,), low=0, high=1, dtype=np.float64),
},
)
elif recurse_state:
self.observation_space = Dict(
{
"index": Box(shape=(1,), low=0, high=size - 1),
"dict": Dict(
{
"tuple": Tuple(
(
Discrete(2),
Box(shape=(2,), low=0, high=1, dtype=np.float64),
),
),
"rand": Box(shape=(1, 2), low=0, high=1, dtype=np.float64),
},
),
},
)
elif array_state:
self.observation_space = Box(shape=(4, 84, 84), low=0, high=255)
else:
self.observation_space = Box(shape=(1,), low=0, high=size - 1)
if multidiscrete_action:
self.action_space = MultiDiscrete([2, 2])
else:
self.action_space = Discrete(2)
self.terminated = False
self.index = 0
def reset(self, seed=None, options=None):
if options is None:
options = {"state": 0}
super().reset(seed=seed)
self.terminated = False
self.do_sleep()
self.index = options["state"]
return self._get_state(), {"key": 1, "env": self}
def _get_reward(self):
"""Generate a non-scalar reward if ma_rew is True."""
end_flag = int(self.terminated)
if self.ma_rew > 0:
return [end_flag] * self.ma_rew
return end_flag
def _get_state(self):
"""Generate state(observation) of MyTestEnv."""
if self.dict_state:
return {
"index": np.array([self.index], dtype=np.float32),
"rand": self.np_random.random(1),
}
if self.recurse_state:
return {
"index": np.array([self.index], dtype=np.float32),
"dict": {
"tuple": (np.array([1], dtype=int), self.np_random.random(2)),
"rand": self.np_random.random((1, 2)),
},
}
if self.array_state:
img = np.zeros([4, 84, 84], int)
img[3, np.arange(84), np.arange(84)] = self.index
img[2, np.arange(84)] = self.index
img[1, :, np.arange(84)] = self.index
img[0] = self.index
return img
return np.array([self.index], dtype=np.float32)
def do_sleep(self):
if self.sleep > 0:
sleep_time = random.random() if self.random_sleep else 1
sleep_time *= self.sleep
time.sleep(sleep_time)
def step(self, action):
self.steps += 1
if self._md_action:
action = action[0]
if self.terminated:
raise ValueError("step after done !!!")
self.do_sleep()
if self.index == self.size:
self.terminated = True
return self._get_state(), self._get_reward(), self.terminated, False, {}
if action == 0:
self.index = max(self.index - 1, 0)
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self} if self.dict_state else {},
)
if action == 1:
self.index += 1
self.terminated = self.index == self.size
return (
self._get_state(),
self._get_reward(),
self.terminated,
False,
{"key": 1, "env": self},
)
return None
class NXEnv(gym.Env):
def __init__(self, size, obs_type, feat_dim=32):
self.size = size
self.feat_dim = feat_dim
self.graph = nx.Graph()
self.graph.add_nodes_from(list(range(size)))
assert obs_type in ["array", "object"]
self.obs_type = obs_type
def _encode_obs(self):
if self.obs_type == "array":
return np.stack([v["data"] for v in self.graph._node.values()])
return deepcopy(self.graph)
def reset(self):
graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = graph_state[i]
return self._encode_obs(), {}
def step(self, action):
next_graph_state = np.random.rand(self.size, self.feat_dim)
for i in range(self.size):
self.graph.nodes[i]["data"] = next_graph_state[i]
return self._encode_obs(), 1.0, 0, 0, {}
class MyGoalEnv(MyTestEnv):
def __init__(self, *args, **kwargs):
assert (
kwargs.get("dict_state", 0) + kwargs.get("recurse_state", 0) == 0
), "dict_state / recurse_state not supported"
super().__init__(*args, **kwargs)
obs, _ = super().reset(options={"state": 0})
obs, _, _, _, _ = super().step(1)
self._goal = obs * self.size
super_obsv = self.observation_space
self.observation_space = gym.spaces.Dict(
{
"observation": super_obsv,
"achieved_goal": super_obsv,
"desired_goal": super_obsv,
},
)
def reset(self, *args, **kwargs):
obs, info = super().reset(*args, **kwargs)
new_obs = {"observation": obs, "achieved_goal": obs, "desired_goal": self._goal}
return new_obs, info
def step(self, *args, **kwargs):
obs_next, rew, terminated, truncated, info = super().step(*args, **kwargs)
new_obs_next = {
"observation": obs_next,
"achieved_goal": obs_next,
"desired_goal": self._goal,
}
return new_obs_next, rew, terminated, truncated, info
def compute_reward_fn(
self,
achieved_goal: np.ndarray,
desired_goal: np.ndarray,
info: dict,
) -> np.ndarray:
axis = -1
if self.array_state:
axis = (-3, -2, -1)
return (achieved_goal == desired_goal).all(axis=axis)