Tianshou/test/discrete/test_bdq.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

148 lines
5.4 KiB
Python

import argparse
import pprint
import gymnasium as gym
import numpy as np
import torch
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import ContinuousToDiscrete, DummyVectorEnv
from tianshou.policy import BranchingDQNPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils.net.common import BranchingNet
def get_args():
parser = argparse.ArgumentParser()
# task
parser.add_argument("--task", type=str, default="Pendulum-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
# network architecture
parser.add_argument("--common-hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--action-hidden-sizes", type=int, nargs="*", default=[64])
parser.add_argument("--value-hidden-sizes", type=int, nargs="*", default=[64])
parser.add_argument("--action-per-branch", type=int, default=40)
# training hyperparameters
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.01)
parser.add_argument("--eps-train", type=float, default=0.76)
parser.add_argument("--eps-decay", type=float, default=1e-4)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--target-update-freq", type=int, default=200)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=80000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_known_args()[0]
def test_bdq(args=get_args()):
env = gym.make(args.task)
env = ContinuousToDiscrete(env, args.action_per_branch)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.num_branches = env.action_space.shape[0]
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
print("Observations shape:", args.state_shape)
print("Num branches:", args.num_branches)
print("Actions per branch:", args.action_per_branch)
train_envs = DummyVectorEnv(
[
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
for _ in range(args.training_num)
],
)
test_envs = DummyVectorEnv(
[
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
for _ in range(args.test_num)
],
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = BranchingNet(
args.state_shape,
args.num_branches,
args.action_per_branch,
args.common_hidden_sizes,
args.value_hidden_sizes,
args.action_hidden_sizes,
device=args.device,
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = BranchingDQNPolicy(net, optim, args.gamma, target_update_freq=args.target_update_freq)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, args.training_num),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs, exploration_noise=False)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
def train_fn(epoch, env_step): # exp decay
eps = max(args.eps_train * (1 - args.eps_decay) ** env_step, args.eps_test)
policy.set_eps(eps)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
).run()
# assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
collector_result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = collector_result["rews"], collector_result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_bdq(get_args())