Tianshou/test/modelbased/test_ppo_icm.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

196 lines
7.1 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from gym.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import ICMPolicy, PPOPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import MLP, ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--step-per-collect", type=int, default=2000)
parser.add_argument("--repeat-per-collect", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--training-num", type=int, default=20)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# ppo special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--rew-norm", type=int, default=0)
parser.add_argument("--norm-adv", type=int, default=0)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=0)
parser.add_argument(
"--lr-scale",
type=float,
default=1.0,
help="use intrinsic curiosity module with this lr scale",
)
parser.add_argument(
"--reward-scale",
type=float,
default=0.01,
help="scaling factor for intrinsic curiosity reward",
)
parser.add_argument(
"--forward-loss-weight",
type=float,
default=0.2,
help="weight for the forward model loss in ICM",
)
return parser.parse_known_args()[0]
def test_ppo(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
actor_critic = ActorCritic(actor, critic)
# orthogonal initialization
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor,
critic,
optim,
dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
gae_lambda=args.gae_lambda,
reward_normalization=args.rew_norm,
dual_clip=args.dual_clip,
value_clip=args.value_clip,
action_space=env.action_space,
deterministic_eval=True,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
)
feature_dim = args.hidden_sizes[-1]
feature_net = MLP(
np.prod(args.state_shape),
output_dim=feature_dim,
hidden_sizes=args.hidden_sizes[:-1],
device=args.device,
)
action_dim = np.prod(args.action_shape)
icm_net = IntrinsicCuriosityModule(
feature_net,
feature_dim,
action_dim,
hidden_sizes=args.hidden_sizes[-1:],
device=args.device,
).to(args.device)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy,
icm_net,
icm_optim,
args.lr_scale,
args.reward_scale,
args.forward_loss_weight,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "ppo_icm")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_ppo()