Preparation for #914 and #920 Changes formatting to ruff and black. Remove python 3.8 ## Additional Changes - Removed flake8 dependencies - Adjusted pre-commit. Now CI and Make use pre-commit, reducing the duplication of linting calls - Removed check-docstyle option (ruff is doing that) - Merged format and lint. In CI the format-lint step fails if any changes are done, so it fulfills the lint functionality. --------- Co-authored-by: Jiayi Weng <jiayi@openai.com>
228 lines
8.0 KiB
Python
228 lines
8.0 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from gym.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import CQLPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
|
|
if __name__ == "__main__":
|
|
from gather_pendulum_data import expert_file_name, gather_data
|
|
else: # pytest
|
|
from test.offline.gather_pendulum_data import expert_file_name, gather_data
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--alpha", type=float, default=0.2)
|
|
parser.add_argument("--auto-alpha", default=True, action="store_true")
|
|
parser.add_argument("--alpha-lr", type=float, default=1e-3)
|
|
parser.add_argument("--cql-alpha-lr", type=float, default=1e-3)
|
|
parser.add_argument("--start-timesteps", type=int, default=10000)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=500)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--temperature", type=float, default=1.0)
|
|
parser.add_argument("--cql-weight", type=float, default=1.0)
|
|
parser.add_argument("--with-lagrange", type=bool, default=True)
|
|
parser.add_argument("--lagrange-threshold", type=float, default=10.0)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
|
|
parser.add_argument("--eval-freq", type=int, default=1)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=1 / 35)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_cql(args=get_args()):
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0] # float
|
|
if args.reward_threshold is None:
|
|
# too low?
|
|
default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
|
|
args.state_dim = args.state_shape[0]
|
|
args.action_dim = args.action_shape[0]
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
# actor network
|
|
net_a = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
actor = ActorProb(
|
|
net_a,
|
|
action_shape=args.action_shape,
|
|
device=args.device,
|
|
unbounded=True,
|
|
conditioned_sigma=True,
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
# critic network
|
|
net_c1 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
net_c2 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
if args.auto_alpha:
|
|
target_entropy = -np.prod(env.action_space.shape)
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy = CQLPolicy(
|
|
actor,
|
|
actor_optim,
|
|
critic1,
|
|
critic1_optim,
|
|
critic2,
|
|
critic2_optim,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
cql_alpha_lr=args.cql_alpha_lr,
|
|
cql_weight=args.cql_weight,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
temperature=args.temperature,
|
|
with_lagrange=args.with_lagrange,
|
|
lagrange_threshold=args.lagrange_threshold,
|
|
min_action=np.min(env.action_space.low),
|
|
max_action=np.max(env.action_space.high),
|
|
device=args.device,
|
|
)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
# buffer has been gathered
|
|
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_cql'
|
|
log_path = os.path.join(args.logdir, args.task, "cql", log_file)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
def watch():
|
|
policy.load_state_dict(
|
|
torch.load(os.path.join(log_path, "policy.pth"), map_location=torch.device("cpu")),
|
|
)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
collector.collect(n_episode=1, render=1 / 35)
|
|
|
|
# trainer
|
|
trainer = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
save_best_fn=save_best_fn,
|
|
stop_fn=stop_fn,
|
|
logger=logger,
|
|
)
|
|
|
|
for epoch, epoch_stat, info in trainer:
|
|
print(f"Epoch: {epoch}")
|
|
print(epoch_stat)
|
|
print(info)
|
|
|
|
assert stop_fn(info["best_reward"])
|
|
|
|
# Let's watch its performance!
|
|
if __name__ == "__main__":
|
|
pprint.pprint(info)
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
collector_result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = collector_result["rews"], collector_result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_cql()
|