Tianshou/test/throughput/test_batch_profile.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

132 lines
3.3 KiB
Python

import copy
import pickle
import numpy as np
import pytest
import torch
from tianshou.data import Batch
@pytest.fixture(scope="module")
def data():
print("Initializing data...")
np.random.seed(0)
batch_set = [
Batch(
a=list(np.arange(1e3)),
b={"b1": (3.14, 3.14), "b2": np.arange(1e3)},
c=i,
)
for i in np.arange(int(1e4))
]
batch0 = Batch(
a=np.ones((3, 4), dtype=np.float64),
b=Batch(
c=np.ones((1,), dtype=np.float64),
d=torch.ones((3, 3, 3), dtype=torch.float32),
e=list(range(3)),
),
)
batchs1 = [copy.deepcopy(batch0) for _ in np.arange(1e4)]
batchs2 = [copy.deepcopy(batch0) for _ in np.arange(1e4)]
batch_len = int(1e4)
batch3 = Batch(obs=[np.arange(20) for _ in np.arange(batch_len)], reward=np.arange(batch_len))
indexs = np.random.choice(batch_len, size=batch_len // 10, replace=False)
slice_dict = {
"obs": [np.arange(20) for _ in np.arange(batch_len // 10)],
"reward": np.arange(batch_len // 10),
}
dict_set = [
{
"obs": np.arange(20),
"info": "this is info",
"reward": 0,
}
for _ in np.arange(1e2)
]
batch4 = Batch(
a=np.ones((10000, 4), dtype=np.float64),
b=Batch(
c=np.ones((1,), dtype=np.float64),
d=torch.ones((1000, 1000), dtype=torch.float32),
e=np.arange(1000),
),
)
print("Initialized")
return {
"batch_set": batch_set,
"batch0": batch0,
"batchs1": batchs1,
"batchs2": batchs2,
"batch3": batch3,
"indexs": indexs,
"dict_set": dict_set,
"slice_dict": slice_dict,
"batch4": batch4,
}
def test_init(data):
"""Test Batch __init__()."""
for _ in np.arange(10):
_ = Batch(data["batch_set"])
def test_get_item(data):
"""Test get with item."""
for _ in np.arange(1e5):
_ = data["batch3"][data["indexs"]]
def test_get_attr(data):
"""Test get with attr."""
for _ in np.arange(1e6):
data["batch3"].get("obs")
data["batch3"].get("reward")
_, _ = data["batch3"].obs, data["batch3"].reward
def test_set_item(data):
"""Test set with item."""
for _ in np.arange(1e4):
data["batch3"][data["indexs"]] = data["slice_dict"]
def test_set_attr(data):
"""Test set with attr."""
for _ in np.arange(1e4):
data["batch3"].c = np.arange(1e3)
data["batch3"].obs = data["dict_set"]
def test_numpy_torch_convert(data):
"""Test conversion between numpy and torch."""
for _ in np.arange(1e4): # not sure what's wrong in torch==1.10.0
data["batch4"].to_torch()
data["batch4"].to_numpy()
def test_pickle(data):
for _ in np.arange(1e4):
pickle.loads(pickle.dumps(data["batch4"]))
def test_cat(data):
"""Test cat."""
for i in range(10000):
Batch.cat((data["batch0"], data["batch0"]))
data["batchs1"][i].cat_(data["batch0"])
def test_stack(data):
"""Test stack."""
for i in range(10000):
Batch.stack((data["batch0"], data["batch0"]))
data["batchs2"][i].stack_([data["batch0"]])
if __name__ == "__main__":
pytest.main(["-s", "-k batch_profile", "--durations=0", "-v"])