Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

139 lines
5.5 KiB
Python

from copy import deepcopy
from typing import Any, Optional
import numpy as np
import torch
from tianshou.data import ReplayBuffer
from tianshou.data.types import RolloutBatchProtocol
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.policy import DDPGPolicy
class TD3Policy(DDPGPolicy):
"""Implementation of TD3, arXiv:1802.09477.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param float tau: param for soft update of the target network. Default to 0.005.
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param float exploration_noise: the exploration noise, add to the action.
Default to ``GaussianNoise(sigma=0.1)``
:param float policy_noise: the noise used in updating policy network.
Default to 0.2.
:param int update_actor_freq: the update frequency of actor network.
Default to 2.
:param float noise_clip: the clipping range used in updating policy network.
Default to 0.5.
:param bool reward_normalization: normalize the reward to Normal(0, 1).
Default to False.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action) or empty string for no bounding.
Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic1: torch.nn.Module,
critic1_optim: torch.optim.Optimizer,
critic2: torch.nn.Module,
critic2_optim: torch.optim.Optimizer,
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
policy_noise: float = 0.2,
update_actor_freq: int = 2,
noise_clip: float = 0.5,
reward_normalization: bool = False,
estimation_step: int = 1,
**kwargs: Any,
) -> None:
super().__init__(
actor,
actor_optim,
None,
None,
tau,
gamma,
exploration_noise,
reward_normalization,
estimation_step,
**kwargs,
)
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._policy_noise = policy_noise
self._freq = update_actor_freq
self._noise_clip = noise_clip
self._cnt = 0
self._last = 0
def train(self, mode: bool = True) -> "TD3Policy":
self.training = mode
self.actor.train(mode)
self.critic1.train(mode)
self.critic2.train(mode)
return self
def sync_weight(self) -> None:
self.soft_update(self.critic1_old, self.critic1, self.tau)
self.soft_update(self.critic2_old, self.critic2, self.tau)
self.soft_update(self.actor_old, self.actor, self.tau)
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
batch = buffer[indices] # batch.obs: s_{t+n}
act_ = self(batch, model="actor_old", input="obs_next").act
noise = torch.randn(size=act_.shape, device=act_.device) * self._policy_noise
if self._noise_clip > 0.0:
noise = noise.clamp(-self._noise_clip, self._noise_clip)
act_ += noise
return torch.min(
self.critic1_old(batch.obs_next, act_),
self.critic2_old(batch.obs_next, act_),
)
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
# critic 1&2
td1, critic1_loss = self._mse_optimizer(batch, self.critic1, self.critic1_optim)
td2, critic2_loss = self._mse_optimizer(batch, self.critic2, self.critic2_optim)
batch.weight = (td1 + td2) / 2.0 # prio-buffer
# actor
if self._cnt % self._freq == 0:
actor_loss = -self.critic1(batch.obs, self(batch, eps=0.0).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self._last = actor_loss.item()
self.actor_optim.step()
self.sync_weight()
self._cnt += 1
return {
"loss/actor": self._last,
"loss/critic1": critic1_loss.item(),
"loss/critic2": critic2_loss.item(),
}