Markus Krimmel ea36dc5195
Changes to support Gym 0.26.0 (#748)
* Changes to support Gym 0.26.0

* Replace map by simpler list comprehension

* Use syntax that is compatible with python 3.7

* Format code

* Fix environment seeding in test environment, fix buffer_profile test

* Remove self.seed() from __init__

* Fix random number generation

* Fix throughput tests

* Fix tests

* Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings

* fix lint

* fix

* fix import

* fix

* fix mypy

* pytest --ignore='test/3rd_party'

* Use correct step API in _SetAttrWrapper

* Format

* Fix mypy

* Format

* Fix pydocstyle.
2022-09-26 09:31:23 -07:00

53 lines
1.6 KiB
Python

from typing import Any, Callable, List, Optional, Tuple, Union
import gym
import numpy as np
from tianshou.env.worker import EnvWorker
class DummyEnvWorker(EnvWorker):
"""Dummy worker used in sequential vector environments."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = env_fn()
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env.unwrapped, key, value)
def reset(self, **kwargs: Any) -> Union[np.ndarray, Tuple[np.ndarray, dict]]:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return self.env.reset(**kwargs)
@staticmethod
def wait( # type: ignore
workers: List["DummyEnvWorker"], wait_num: int, timeout: Optional[float] = None
) -> List["DummyEnvWorker"]:
# Sequential EnvWorker objects are always ready
return workers
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
if action is None:
self.result = self.env.reset(**kwargs)
else:
self.result = self.env.step(action) # type: ignore
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
super().seed(seed)
try:
return self.env.seed(seed) # type: ignore
except (AttributeError, NotImplementedError):
self.env.reset(seed=seed)
return [seed] # type: ignore
def render(self, **kwargs: Any) -> Any:
return self.env.render(**kwargs)
def close_env(self) -> None:
self.env.close()