Markus Krimmel ea36dc5195
Changes to support Gym 0.26.0 (#748)
* Changes to support Gym 0.26.0

* Replace map by simpler list comprehension

* Use syntax that is compatible with python 3.7

* Format code

* Fix environment seeding in test environment, fix buffer_profile test

* Remove self.seed() from __init__

* Fix random number generation

* Fix throughput tests

* Fix tests

* Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings

* fix lint

* fix

* fix import

* fix

* fix mypy

* pytest --ignore='test/3rd_party'

* Use correct step API in _SetAttrWrapper

* Format

* Fix mypy

* Format

* Fix pydocstyle.
2022-09-26 09:31:23 -07:00

91 lines
2.9 KiB
Python

from typing import Any, Callable, List, Optional, Union
import gym
import numpy as np
from tianshou.env.utils import gym_new_venv_step_type, gym_old_venv_step_type
from tianshou.env.worker import EnvWorker
try:
import ray
except ImportError:
pass
class _SetAttrWrapper(gym.Wrapper):
def __init__(self, env: gym.Env) -> None:
"""Constructor of this wrapper.
For Gym 0.25, wrappers will automatically
change to the old step API. We need to check
which API ``env`` follows and adjust the
wrapper accordingly.
"""
env.reset()
step_result = env.step(env.action_space.sample())
new_step_api = len(step_result) == 5
try:
super().__init__(env, new_step_api=new_step_api) # type: ignore
except TypeError: # The kwarg `new_step_api` was removed in Gym 0.26
super().__init__(env)
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env.unwrapped, key, value)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
class RayEnvWorker(EnvWorker):
"""Ray worker used in RayVectorEnv."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = ray.remote(_SetAttrWrapper).options( # type: ignore
num_cpus=0
).remote(env_fn())
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return ray.get(self.env.get_env_attr.remote(key))
def set_env_attr(self, key: str, value: Any) -> None:
ray.get(self.env.set_env_attr.remote(key, value))
def reset(self, **kwargs: Any) -> Any:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return ray.get(self.env.reset.remote(**kwargs))
@staticmethod
def wait( # type: ignore
workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None
) -> List["RayEnvWorker"]:
results = [x.result for x in workers]
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
return [workers[results.index(result)] for result in ready_results]
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
# self.result is actually a handle
if action is None:
self.result = self.env.reset.remote(**kwargs)
else:
self.result = self.env.step.remote(action)
def recv(self) -> Union[gym_old_venv_step_type, gym_new_venv_step_type]:
return ray.get(self.result) # type: ignore
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
super().seed(seed)
try:
return ray.get(self.env.seed.remote(seed))
except (AttributeError, NotImplementedError):
self.env.reset.remote(seed=seed)
return None
def render(self, **kwargs: Any) -> Any:
return ray.get(self.env.render.remote(**kwargs))
def close_env(self) -> None:
ray.get(self.env.close.remote())