* Changes to support Gym 0.26.0 * Replace map by simpler list comprehension * Use syntax that is compatible with python 3.7 * Format code * Fix environment seeding in test environment, fix buffer_profile test * Remove self.seed() from __init__ * Fix random number generation * Fix throughput tests * Fix tests * Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings * fix lint * fix * fix import * fix * fix mypy * pytest --ignore='test/3rd_party' * Use correct step API in _SetAttrWrapper * Format * Fix mypy * Format * Fix pydocstyle.
91 lines
2.9 KiB
Python
91 lines
2.9 KiB
Python
from typing import Any, Callable, List, Optional, Union
|
|
|
|
import gym
|
|
import numpy as np
|
|
|
|
from tianshou.env.utils import gym_new_venv_step_type, gym_old_venv_step_type
|
|
from tianshou.env.worker import EnvWorker
|
|
|
|
try:
|
|
import ray
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class _SetAttrWrapper(gym.Wrapper):
|
|
|
|
def __init__(self, env: gym.Env) -> None:
|
|
"""Constructor of this wrapper.
|
|
|
|
For Gym 0.25, wrappers will automatically
|
|
change to the old step API. We need to check
|
|
which API ``env`` follows and adjust the
|
|
wrapper accordingly.
|
|
"""
|
|
env.reset()
|
|
step_result = env.step(env.action_space.sample())
|
|
new_step_api = len(step_result) == 5
|
|
try:
|
|
super().__init__(env, new_step_api=new_step_api) # type: ignore
|
|
except TypeError: # The kwarg `new_step_api` was removed in Gym 0.26
|
|
super().__init__(env)
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
setattr(self.env.unwrapped, key, value)
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
return getattr(self.env, key)
|
|
|
|
|
|
class RayEnvWorker(EnvWorker):
|
|
"""Ray worker used in RayVectorEnv."""
|
|
|
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
|
|
self.env = ray.remote(_SetAttrWrapper).options( # type: ignore
|
|
num_cpus=0
|
|
).remote(env_fn())
|
|
super().__init__(env_fn)
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
return ray.get(self.env.get_env_attr.remote(key))
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
ray.get(self.env.set_env_attr.remote(key, value))
|
|
|
|
def reset(self, **kwargs: Any) -> Any:
|
|
if "seed" in kwargs:
|
|
super().seed(kwargs["seed"])
|
|
return ray.get(self.env.reset.remote(**kwargs))
|
|
|
|
@staticmethod
|
|
def wait( # type: ignore
|
|
workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None
|
|
) -> List["RayEnvWorker"]:
|
|
results = [x.result for x in workers]
|
|
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
|
|
return [workers[results.index(result)] for result in ready_results]
|
|
|
|
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
|
|
# self.result is actually a handle
|
|
if action is None:
|
|
self.result = self.env.reset.remote(**kwargs)
|
|
else:
|
|
self.result = self.env.step.remote(action)
|
|
|
|
def recv(self) -> Union[gym_old_venv_step_type, gym_new_venv_step_type]:
|
|
return ray.get(self.result) # type: ignore
|
|
|
|
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
|
|
super().seed(seed)
|
|
try:
|
|
return ray.get(self.env.seed.remote(seed))
|
|
except (AttributeError, NotImplementedError):
|
|
self.env.reset.remote(seed=seed)
|
|
return None
|
|
|
|
def render(self, **kwargs: Any) -> Any:
|
|
return ray.get(self.env.render.remote(**kwargs))
|
|
|
|
def close_env(self) -> None:
|
|
ray.get(self.env.close.remote())
|