Tianshou/examples/box2d/acrobot_dualdqn.py
maxhuettenrauch 60d1ba1c8f
Fix/reset before collect in procedural examples, tests and hl experiment (#1100)
Needed due to a breaking change in the Collector which was overlooked in some of the examples
2024-04-16 10:30:21 +02:00

157 lines
5.8 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DQNPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Acrobot-v1")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.5)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.95)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=100)
parser.add_argument("--update-per-step", type=float, default=0.01)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--dueling-q-hidden-sizes", type=int, nargs="*", default=[128, 128])
parser.add_argument("--dueling-v-hidden-sizes", type=int, nargs="*", default=[128, 128])
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_args()
def test_dqn(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
assert isinstance(env.action_space, gym.spaces.Discrete)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
net = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
dueling_param=(Q_param, V_param),
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy: DQNPolicy = DQNPolicy(
model=net,
optim=optim,
action_space=env.action_space,
discount_factor=args.gamma,
estimation_step=args.n_step,
target_update_freq=args.target_update_freq,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.reset()
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, "dqn")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
if env.spec:
if not env.spec.reward_threshold:
return False
else:
return mean_rewards >= env.spec.reward_threshold
return False
def train_fn(epoch: int, env_step: int) -> None:
if env_step <= 100000:
policy.set_eps(args.eps_train)
elif env_step <= 500000:
eps = args.eps_train - (env_step - 100000) / 400000 * (0.5 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.5 * args.eps_train)
def test_fn(epoch: int, env_step: int | None) -> None:
policy.set_eps(args.eps_test)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_dqn(get_args())