Needed due to a breaking change in the Collector which was overlooked in some of the examples
161 lines
5.9 KiB
Python
161 lines
5.9 KiB
Python
import argparse
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import ContinuousToDiscrete, DummyVectorEnv
|
|
from tianshou.policy import BranchingDQNPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils.net.common import BranchingNet
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
# task
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
# network architecture
|
|
parser.add_argument("--common-hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--action-hidden-sizes", type=int, nargs="*", default=[64])
|
|
parser.add_argument("--value-hidden-sizes", type=int, nargs="*", default=[64])
|
|
parser.add_argument("--action-per-branch", type=int, default=40)
|
|
# training hyperparameters
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--eps-test", type=float, default=0.01)
|
|
parser.add_argument("--eps-train", type=float, default=0.76)
|
|
parser.add_argument("--eps-decay", type=float, default=1e-4)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.9)
|
|
parser.add_argument("--target-update-freq", type=int, default=200)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=80000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=128)
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_bdq(args: argparse.Namespace = get_args()) -> None:
|
|
env = gym.make(args.task)
|
|
env = ContinuousToDiscrete(env, args.action_per_branch)
|
|
|
|
if isinstance(env.observation_space, gym.spaces.Box):
|
|
args.state_shape = env.observation_space.shape
|
|
elif isinstance(env.observation_space, gym.spaces.Discrete):
|
|
args.state_shape = int(env.observation_space.n)
|
|
assert isinstance(env.action_space, gym.spaces.MultiDiscrete)
|
|
args.num_branches = env.action_space.shape[0]
|
|
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
|
|
print("Observations shape:", args.state_shape)
|
|
print("Num branches:", args.num_branches)
|
|
print("Actions per branch:", args.action_per_branch)
|
|
|
|
train_envs = DummyVectorEnv(
|
|
[
|
|
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
|
|
for _ in range(args.training_num)
|
|
],
|
|
)
|
|
test_envs = DummyVectorEnv(
|
|
[
|
|
lambda: ContinuousToDiscrete(gym.make(args.task), args.action_per_branch)
|
|
for _ in range(args.test_num)
|
|
],
|
|
)
|
|
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = BranchingNet(
|
|
args.state_shape,
|
|
args.num_branches,
|
|
args.action_per_branch,
|
|
args.common_hidden_sizes,
|
|
args.value_hidden_sizes,
|
|
args.action_hidden_sizes,
|
|
device=args.device,
|
|
).to(args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
policy: BranchingDQNPolicy = BranchingDQNPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
discount_factor=args.gamma,
|
|
action_space=env.action_space, # type: ignore[arg-type] # TODO: should `BranchingDQNPolicy` support also `MultiDiscrete` action spaces?
|
|
target_update_freq=args.target_update_freq,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, args.training_num),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=False)
|
|
# policy.set_eps(1)
|
|
train_collector.reset()
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
|
|
def train_fn(epoch: int, env_step: int) -> None: # exp decay
|
|
eps = max(args.eps_train * (1 - args.eps_decay) ** env_step, args.eps_test)
|
|
policy.set_eps(eps)
|
|
|
|
def test_fn(epoch: int, env_step: int | None) -> None:
|
|
policy.set_eps(args.eps_test)
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
).run()
|
|
|
|
# assert stop_fn(result.best_reward)
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
collector_stats.pprint_asdict()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_bdq(get_args())
|