Tianshou/test/discrete/test_rainbow.py
maxhuettenrauch 60d1ba1c8f
Fix/reset before collect in procedural examples, tests and hl experiment (#1100)
Needed due to a breaking change in the Collector which was overlooked in some of the examples
2024-04-16 10:30:21 +02:00

247 lines
9.4 KiB
Python

import argparse
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import RainbowPolicy
from tianshou.policy.base import BasePolicy
from tianshou.policy.modelfree.rainbow import RainbowTrainingStats
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.discrete import NoisyLinear
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--num-atoms", type=int, default=51)
parser.add_argument("--v-min", type=float, default=-10.0)
parser.add_argument("--v-max", type=float, default=10.0)
parser.add_argument("--noisy-std", type=float, default=0.1)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=8000)
parser.add_argument("--step-per-collect", type=int, default=8)
parser.add_argument("--update-per-step", type=float, default=0.125)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128])
parser.add_argument("--training-num", type=int, default=8)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--prioritized-replay", action="store_true", default=False)
parser.add_argument("--alpha", type=float, default=0.6)
parser.add_argument("--beta", type=float, default=0.4)
parser.add_argument("--beta-final", type=float, default=1.0)
parser.add_argument("--resume", action="store_true")
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--save-interval", type=int, default=4)
return parser.parse_known_args()[0]
def test_rainbow(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
assert isinstance(env.action_space, gym.spaces.Discrete)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
def noisy_linear(x: int, y: int) -> NoisyLinear:
return NoisyLinear(x, y, args.noisy_std)
net = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=True,
num_atoms=args.num_atoms,
dueling_param=({"linear_layer": noisy_linear}, {"linear_layer": noisy_linear}),
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy: RainbowPolicy[RainbowTrainingStats] = RainbowPolicy(
model=net,
optim=optim,
discount_factor=args.gamma,
action_space=env.action_space,
num_atoms=args.num_atoms,
v_min=args.v_min,
v_max=args.v_max,
estimation_step=args.n_step,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
buf: PrioritizedVectorReplayBuffer | VectorReplayBuffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
alpha=args.alpha,
beta=args.beta,
weight_norm=True,
)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.reset()
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, "rainbow")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
def train_fn(epoch: int, env_step: int) -> None:
# eps annealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
# beta annealing, just a demo
if args.prioritized_replay:
if env_step <= 10000:
beta = args.beta
elif env_step <= 50000:
beta = args.beta - (env_step - 10000) / 40000 * (args.beta - args.beta_final)
else:
beta = args.beta_final
buf.set_beta(beta)
def test_fn(epoch: int, env_step: int | None) -> None:
policy.set_eps(args.eps_test)
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
# Example: saving by epoch num
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save(
{
"model": policy.state_dict(),
"optim": optim.state_dict(),
},
ckpt_path,
)
buffer_path = os.path.join(log_path, "train_buffer.pkl")
with open(buffer_path, "wb") as f:
pickle.dump(train_collector.buffer, f)
return ckpt_path
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, "checkpoint.pth")
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint["model"])
policy.optim.load_state_dict(checkpoint["optim"])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
buffer_path = os.path.join(log_path, "train_buffer.pkl")
if os.path.exists(buffer_path):
with open(buffer_path, "rb") as f:
train_collector.buffer = pickle.load(f)
print("Successfully restore buffer.")
else:
print("Fail to restore buffer.")
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
def test_rainbow_resume(args: argparse.Namespace = get_args()) -> None:
args.resume = True
test_rainbow(args)
def test_prainbow(args: argparse.Namespace = get_args()) -> None:
args.prioritized_replay = True
args.gamma = 0.95
args.seed = 1
test_rainbow(args)
if __name__ == "__main__":
test_rainbow(get_args())