Tianshou/test/modelbased/test_psrl.py
Daniel Plop 8a0629ded6
Fix mypy issues in tests and examples (#1077)
Closes #952 

- `SamplingConfig` supports `batch_size=None`. #1077
- tests and examples are covered by `mypy`. #1077
- `NetBase` is more used, stricter typing by making it generic. #1077
- `utils.net.common.Recurrent` now receives and returns a
`RecurrentStateBatch` instead of a dict. #1077

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-04-03 18:07:51 +02:00

134 lines
5.0 KiB
Python

import argparse
import os
import pprint
import numpy as np
import pytest
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import PSRLPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
try:
import envpool
except ImportError:
envpool = None
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="NChain-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=50000)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=1)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--rew-mean-prior", type=float, default=0.0)
parser.add_argument("--rew-std-prior", type=float, default=1.0)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eps", type=float, default=0.01)
parser.add_argument("--add-done-loop", action="store_true", default=False)
parser.add_argument(
"--logger",
type=str,
default="none", # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
choices=["wandb", "tensorboard", "none"],
)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_psrl(args: argparse.Namespace = get_args()) -> None:
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
if args.reward_threshold is None:
default_reward_threshold = {"NChain-v0": 3400}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
print("reward threshold:", args.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy: PSRLPolicy = PSRLPolicy(
trans_count_prior=trans_count_prior,
rew_mean_prior=rew_mean_prior,
rew_std_prior=rew_std_prior,
action_space=env.action_space,
discount_factor=args.gamma,
epsilon=args.eps,
add_done_loop=args.add_done_loop,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
train_collector.reset()
test_collector = Collector(policy, test_envs)
test_collector.reset()
# Logger
log_path = os.path.join(args.logdir, args.task, "psrl")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger: WandbLogger | TensorboardLogger | LazyLogger
if args.logger == "wandb":
logger = WandbLogger(save_interval=1, project="psrl", name="wandb_test", config=args)
logger.load(writer)
elif args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else:
logger = LazyLogger()
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer, test it without logger
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=1,
episode_per_test=args.test_num,
batch_size=0,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
logger=logger,
test_in_train=False,
).run()
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
stats = test_collector.collect(n_episode=args.test_num, render=args.render)
stats.pprint_asdict()
elif env.spec.reward_threshold:
assert result.best_reward >= env.spec.reward_threshold
if __name__ == "__main__":
test_psrl()