111 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import pprint
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.policy import PPOPolicy
 | 
						|
from tianshou.env import SubprocVectorEnv
 | 
						|
from tianshou.trainer import onpolicy_trainer
 | 
						|
from tianshou.data import Collector, ReplayBuffer
 | 
						|
from tianshou.env.atari import create_atari_environment
 | 
						|
 | 
						|
from discrete_net import Net, Actor, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='Pong')
 | 
						|
    parser.add_argument('--seed', type=int, default=1626)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.99)
 | 
						|
    parser.add_argument('--epoch', type=int, default=100)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=1000)
 | 
						|
    parser.add_argument('--collect-per-step', type=int, default=100)
 | 
						|
    parser.add_argument('--repeat-per-collect', type=int, default=2)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=64)
 | 
						|
    parser.add_argument('--layer-num', type=int, default=1)
 | 
						|
    parser.add_argument('--training-num', type=int, default=8)
 | 
						|
    parser.add_argument('--test-num', type=int, default=8)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str,
 | 
						|
        default='cuda' if torch.cuda.is_available() else 'cpu')
 | 
						|
    # ppo special
 | 
						|
    parser.add_argument('--vf-coef', type=float, default=0.5)
 | 
						|
    parser.add_argument('--ent-coef', type=float, default=0.0)
 | 
						|
    parser.add_argument('--eps-clip', type=float, default=0.2)
 | 
						|
    parser.add_argument('--max-grad-norm', type=float, default=0.5)
 | 
						|
    parser.add_argument('--max_episode_steps', type=int, default=2000)
 | 
						|
    args = parser.parse_known_args()[0]
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
def test_ppo(args=get_args()):
 | 
						|
    env = create_atari_environment(
 | 
						|
        args.task, max_episode_steps=args.max_episode_steps)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space().shape or env.action_space().n
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    train_envs = SubprocVectorEnv([lambda: create_atari_environment(
 | 
						|
        args.task, max_episode_steps=args.max_episode_steps)
 | 
						|
        for _ in range(args.training_num)])
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = SubprocVectorEnv([lambda: create_atari_environment(
 | 
						|
        args.task, max_episode_steps=args.max_episode_steps)
 | 
						|
        for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(args.layer_num, args.state_shape, device=args.device)
 | 
						|
    actor = Actor(net, args.action_shape).to(args.device)
 | 
						|
    critic = Critic(net).to(args.device)
 | 
						|
    optim = torch.optim.Adam(list(
 | 
						|
        actor.parameters()) + list(critic.parameters()), lr=args.lr)
 | 
						|
    dist = torch.distributions.Categorical
 | 
						|
    policy = PPOPolicy(
 | 
						|
        actor, critic, optim, dist, args.gamma,
 | 
						|
        max_grad_norm=args.max_grad_norm,
 | 
						|
        eps_clip=args.eps_clip,
 | 
						|
        vf_coef=args.vf_coef,
 | 
						|
        ent_coef=args.ent_coef,
 | 
						|
        action_range=None)
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy, train_envs, ReplayBuffer(args.buffer_size))
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # log
 | 
						|
    writer = SummaryWriter(args.logdir + '/' + 'ppo')
 | 
						|
 | 
						|
    def stop_fn(x):
 | 
						|
        if env.env.spec.reward_threshold:
 | 
						|
            return x >= env.spec.reward_threshold
 | 
						|
        else:
 | 
						|
            return False
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = onpolicy_trainer(
 | 
						|
        policy, train_collector, test_collector, args.epoch,
 | 
						|
        args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
 | 
						|
        args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer,
 | 
						|
        task=args.task)
 | 
						|
    train_collector.close()
 | 
						|
    test_collector.close()
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        env = create_atari_environment(args.task)
 | 
						|
        collector = Collector(policy, env)
 | 
						|
        result = collector.collect(n_step=2000, render=args.render)
 | 
						|
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
 | 
						|
        collector.close()
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_ppo()
 |