At the moment, WandbLogger is always using wandb.init with monitor_gym = True. This fails when OpenAI's gym is not installed, which doesn't make sense after the transition to Gymnasium. I am using Tianshou with non-standard RL environment, which adhere to Gymnasium API, and the current code is throwing exceptions. I suggest to make it a controllable parameter. I left the default value to True (to make it functionally the same for people using gym). It may also make sense to change the default to False.
151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
import argparse
|
|
import os
|
|
from typing import Callable, Optional, Tuple
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.utils import BaseLogger, TensorboardLogger
|
|
from tianshou.utils.logger.base import LOG_DATA_TYPE
|
|
|
|
try:
|
|
import wandb
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class WandbLogger(BaseLogger):
|
|
"""Weights and Biases logger that sends data to https://wandb.ai/.
|
|
|
|
This logger creates three panels with plots: train, test, and update.
|
|
Make sure to select the correct access for each panel in weights and biases:
|
|
|
|
Example of usage:
|
|
::
|
|
|
|
logger = WandbLogger()
|
|
logger.load(SummaryWriter(log_path))
|
|
result = onpolicy_trainer(policy, train_collector, test_collector,
|
|
logger=logger)
|
|
|
|
:param int train_interval: the log interval in log_train_data(). Default to 1000.
|
|
:param int test_interval: the log interval in log_test_data(). Default to 1.
|
|
:param int update_interval: the log interval in log_update_data().
|
|
Default to 1000.
|
|
:param int save_interval: the save interval in save_data(). Default to 1 (save at
|
|
the end of each epoch).
|
|
:param bool write_flush: whether to flush tensorboard result after each
|
|
add_scalar operation. Default to True.
|
|
:param str project: W&B project name. Default to "tianshou".
|
|
:param str name: W&B run name. Default to None. If None, random name is assigned.
|
|
:param str entity: W&B team/organization name. Default to None.
|
|
:param str run_id: run id of W&B run to be resumed. Default to None.
|
|
:param argparse.Namespace config: experiment configurations. Default to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
train_interval: int = 1000,
|
|
test_interval: int = 1,
|
|
update_interval: int = 1000,
|
|
save_interval: int = 1000,
|
|
write_flush: bool = True,
|
|
project: Optional[str] = None,
|
|
name: Optional[str] = None,
|
|
entity: Optional[str] = None,
|
|
run_id: Optional[str] = None,
|
|
config: Optional[argparse.Namespace] = None,
|
|
monitor_gym: bool = True,
|
|
) -> None:
|
|
super().__init__(train_interval, test_interval, update_interval)
|
|
self.last_save_step = -1
|
|
self.save_interval = save_interval
|
|
self.write_flush = write_flush
|
|
self.restored = False
|
|
if project is None:
|
|
project = os.getenv("WANDB_PROJECT", "tianshou")
|
|
|
|
self.wandb_run = wandb.init(
|
|
project=project,
|
|
name=name,
|
|
id=run_id,
|
|
resume="allow",
|
|
entity=entity,
|
|
sync_tensorboard=True,
|
|
monitor_gym=monitor_gym,
|
|
config=config, # type: ignore
|
|
) if not wandb.run else wandb.run
|
|
self.wandb_run._label(repo="tianshou") # type: ignore
|
|
self.tensorboard_logger: Optional[TensorboardLogger] = None
|
|
|
|
def load(self, writer: SummaryWriter) -> None:
|
|
self.writer = writer
|
|
self.tensorboard_logger = TensorboardLogger(
|
|
writer, self.train_interval, self.test_interval, self.update_interval,
|
|
self.save_interval, self.write_flush
|
|
)
|
|
|
|
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
|
|
if self.tensorboard_logger is None:
|
|
raise Exception(
|
|
"`logger` needs to load the Tensorboard Writer before "
|
|
"writing data. Try `logger.load(SummaryWriter(log_path))`"
|
|
)
|
|
else:
|
|
self.tensorboard_logger.write(step_type, step, data)
|
|
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Optional[Callable[[int, int, int], str]] = None,
|
|
) -> None:
|
|
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
|
|
|
|
:param int epoch: the epoch in trainer.
|
|
:param int env_step: the env_step in trainer.
|
|
:param int gradient_step: the gradient_step in trainer.
|
|
:param function save_checkpoint_fn: a hook defined by user, see trainer
|
|
documentation for detail.
|
|
"""
|
|
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
|
|
self.last_save_step = epoch
|
|
checkpoint_path = save_checkpoint_fn(epoch, env_step, gradient_step)
|
|
|
|
checkpoint_artifact = wandb.Artifact(
|
|
'run_' + self.wandb_run.id + '_checkpoint', # type: ignore
|
|
type='model',
|
|
metadata={
|
|
"save/epoch": epoch,
|
|
"save/env_step": env_step,
|
|
"save/gradient_step": gradient_step,
|
|
"checkpoint_path": str(checkpoint_path),
|
|
}
|
|
)
|
|
checkpoint_artifact.add_file(str(checkpoint_path))
|
|
self.wandb_run.log_artifact(checkpoint_artifact) # type: ignore
|
|
|
|
def restore_data(self) -> Tuple[int, int, int]:
|
|
checkpoint_artifact = self.wandb_run.use_artifact( # type: ignore
|
|
f"run_{self.wandb_run.id}_checkpoint:latest" # type: ignore
|
|
)
|
|
assert checkpoint_artifact is not None, "W&B dataset artifact doesn't exist"
|
|
|
|
checkpoint_artifact.download(
|
|
os.path.dirname(checkpoint_artifact.metadata['checkpoint_path'])
|
|
)
|
|
|
|
try: # epoch / gradient_step
|
|
epoch = checkpoint_artifact.metadata["save/epoch"]
|
|
self.last_save_step = self.last_log_test_step = epoch
|
|
gradient_step = checkpoint_artifact.metadata["save/gradient_step"]
|
|
self.last_log_update_step = gradient_step
|
|
except KeyError:
|
|
epoch, gradient_step = 0, 0
|
|
try: # offline trainer doesn't have env_step
|
|
env_step = checkpoint_artifact.metadata["save/env_step"]
|
|
self.last_log_train_step = env_step
|
|
except KeyError:
|
|
env_step = 0
|
|
return epoch, env_step, gradient_step
|