Tianshou/tianshou/utils/net/continuous.py
n+e 94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00

154 lines
5.7 KiB
Python

import torch
import numpy as np
from torch import nn
from tianshou.data import to_torch, to_torch_as
class Actor(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape, max_action=1.,
device='cpu', hidden_layer_size=128):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(hidden_layer_size, np.prod(action_shape))
self._max = max_action
def forward(self, s, state=None, info={}):
"""s -> logits -> action"""
logits, h = self.preprocess(s, state)
logits = self._max * torch.tanh(self.last(logits))
return logits, h
class Critic(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, device='cpu', hidden_layer_size=128):
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.last = nn.Linear(hidden_layer_size, 1)
def forward(self, s, a=None, info={}):
"""(s, a) -> logits -> Q(s, a)"""
s = to_torch(s, device=self.device, dtype=torch.float32)
s = s.flatten(1)
if a is not None:
a = to_torch(a, device=self.device, dtype=torch.float32)
a = a.flatten(1)
s = torch.cat([s, a], dim=1)
logits, h = self.preprocess(s)
logits = self.last(logits)
return logits
class ActorProb(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, preprocess_net, action_shape, max_action=1.,
device='cpu', unbounded=False, hidden_layer_size=128):
super().__init__()
self.preprocess = preprocess_net
self.device = device
self.mu = nn.Linear(hidden_layer_size, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
self._max = max_action
self._unbounded = unbounded
def forward(self, s, state=None, info={}):
"""s -> logits -> (mu, sigma)"""
logits, h = self.preprocess(s, state)
mu = self.mu(logits)
if not self._unbounded:
mu = self._max * torch.tanh(mu)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
return (mu, sigma), None
class RecurrentActorProb(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, layer_num, state_shape, action_shape, max_action=1.,
device='cpu', unbounded=False, hidden_layer_size=128):
super().__init__()
self.device = device
self.nn = nn.LSTM(input_size=np.prod(state_shape),
hidden_size=hidden_layer_size,
num_layers=layer_num, batch_first=True)
self.mu = nn.Linear(hidden_layer_size, np.prod(action_shape))
self.sigma = nn.Parameter(torch.zeros(np.prod(action_shape), 1))
self._max = max_action
self._unbounded = unbounded
def forward(self, s, state=None, info={}):
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
s = to_torch(s, device=self.device, dtype=torch.float32)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(s.shape) == 2:
s = s.unsqueeze(-2)
self.nn.flatten_parameters()
if state is None:
s, (h, c) = self.nn(s)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
s, (h, c) = self.nn(s, (state['h'].transpose(0, 1).contiguous(),
state['c'].transpose(0, 1).contiguous()))
logits = s[:, -1]
mu = self.mu(logits)
if not self._unbounded:
mu = self._max * torch.tanh(mu)
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma.view(shape) + torch.zeros_like(mu)).exp()
# please ensure the first dim is batch size: [bsz, len, ...]
return (mu, sigma), {'h': h.transpose(0, 1).detach(),
'c': c.transpose(0, 1).detach()}
class RecurrentCritic(nn.Module):
"""For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(self, layer_num, state_shape,
action_shape=0, device='cpu', hidden_layer_size=128):
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.nn = nn.LSTM(input_size=np.prod(state_shape),
hidden_size=hidden_layer_size,
num_layers=layer_num, batch_first=True)
self.fc2 = nn.Linear(hidden_layer_size + np.prod(action_shape), 1)
def forward(self, s, a=None):
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
s = to_torch(s, device=self.device, dtype=torch.float32)
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
assert len(s.shape) == 3
self.nn.flatten_parameters()
s, (h, c) = self.nn(s)
s = s[:, -1]
if a is not None:
a = to_torch_as(a, s)
s = torch.cat([s, a], dim=1)
s = self.fc2(s)
return s