2017-12-17 13:28:21 +08:00

202 lines
6.9 KiB
Python

import numpy as np
import random
import tensorflow as tf
import math
from tianshou.data.replay_buffer import sum_tree
from tianshou.data.replay_buffer.buffer import ReplayBuffer
class PropotionalExperience(ReplayBuffer):
""" The class represents prioritized experience replay buffer.
The class has functions: store samples, pick samples with
probability in proportion to sample's priority, update
each sample's priority, reset alpha.
see https://arxiv.org/pdf/1511.05952.pdf .
"""
def __init__(self, env, policy, qnet, target_qnet, conf):
""" Prioritized experience replay buffer initialization.
Parameters
----------
memory_size : int
sample size to be stored
batch_size : int
batch size to be selected by `select` method
alpha: float
exponent determine how much prioritization.
Prob_i \sim priority_i**alpha/sum(priority**alpha)
"""
memory_size = conf['size']
batch_size = conf['batch_size']
alpha = conf['alpha'] if 'alpha' in conf else 0.6
self.tree = sum_tree.SumTree(memory_size)
self.memory_size = memory_size
self.batch_size = batch_size
self.alpha = alpha
self._env = env
self._policy = policy
self._qnet = qnet
self._target_qnet = target_qnet
self._begin_act()
def _begin_act(self):
"""
if the previous interaction is ended or the interaction hasn't started
then begin act from the state of env.reset()
"""
self.observation = self._env.reset()
self.action = self._env.action_space.sample()
done = False
while not done:
if done:
self.observation = self._env.reset()
self.action = self._env.action_space.sample()
self.observation, _, done, _ = self._env.step(self.action)
def add(self, data, priority):
""" Add new sample.
Parameters
----------
data : object
new sample
priority : float
sample's priority
"""
self.tree.add(data, priority**self.alpha)
def sample(self, conf):
""" The method return samples randomly.
Parameters
----------
beta : float
Returns
-------
out :
list of samples
weights:
list of weight
indices:
list of sample indices
The indices indicate sample positions in a sum tree.
:param conf: giving beta
"""
beta = conf['beta'] if 'beta' in conf else 0.4
if self.tree.filled_size() < self.batch_size:
return None, None, None
out = []
indices = []
weights = []
priorities = []
for _ in range(self.batch_size):
r = random.random()
data, priority, index = self.tree.find(r)
priorities.append(priority)
weights.append((1./self.memory_size/priority)**beta if priority > 1e-16 else 0)
indices.append(index)
out.append(data)
self.update_priority([index], [0]) # To avoid duplicating
self.update_priority(indices, priorities) # Revert priorities
max_weights = max(weights)
weights[:] = [x / max_weights for x in weights] # Normalize for stability
return out, weights, indices
def collect(self):
"""
collect data for replay memory and update the priority according to the given data.
store the previous action, previous observation, reward, action, observation in the replay memory.
"""
sess = tf.get_default_session()
current_data = dict()
current_data['previous_action'] = self.action
current_data['previous_observation'] = self.observation
# TODO: change the name of the feed_dict
self.action = np.argmax(sess.run(self._policy, feed_dict={"dqn_observation:0": self.observation.reshape((1,) + self.observation.shape)}))
self.observation, reward, done, _ = self._env.step(self.action)
current_data['action'] = self.action
current_data['observation'] = self.observation
current_data['reward'] = reward
priorities = np.array([self.tree.get_val(i) ** -self.alpha for i in range(self.tree.filled_size())])
priority = np.max(priorities) if len(priorities) > 0 else 1
self.add(current_data, priority)
if done:
self._begin_act()
def next_batch(self, batch_size):
"""
collect a batch of data from replay buffer, update the priority and calculate the necessary statistics for
updating q value network.
:param batch_size: int batch size.
:return: a batch of data, with target storing the target q value and wi, rewards storing the coefficient
for gradient of q value network.
"""
data = dict()
observations = list()
actions = list()
rewards = list()
wi = list()
target = list()
for i in range(0, batch_size):
current_datas, current_wis, current_indexs = self.sample({'batch_size': 1})
current_data = current_datas[0]
current_wi = current_wis[0]
current_index = current_indexs[0]
observations.append(current_data['observation'])
actions.append(current_data['action'])
next_max_qvalue = np.max(self._target_qnet.values(current_data['observation']))
current_qvalue = self._qnet.values(current_data['previous_observation'])[0, current_data['previous_action']]
reward = current_data['reward'] + next_max_qvalue - current_qvalue
rewards.append(reward)
target.append(current_data['reward'] + next_max_qvalue)
self.update_priority([current_index], [math.fabs(reward)])
wi.append(current_wi)
data['observations'] = np.array(observations)
data['actions'] = np.array(actions)
data['rewards'] = np.array(rewards)
data['wi'] = np.array(wi)
data['target'] = np.array(target)
return data
def update_priority(self, indices, priorities):
""" The methods update samples's priority.
Parameters
----------
indices :
list of sample indices
"""
for i, p in zip(indices, priorities):
self.tree.val_update(i, p**self.alpha)
def reset_alpha(self, alpha):
""" Reset a exponent alpha.
Parameters
----------
alpha : float
"""
self.alpha, old_alpha = alpha, self.alpha
priorities = [self.tree.get_val(i)**-old_alpha for i in range(self.tree.filled_size())]
self.update_priority(range(self.tree.filled_size()), priorities)