Tianshou/test/discrete/test_a2c.py
Trinkle23897 680fc0ffbe gae
2020-04-14 21:11:06 +08:00

112 lines
4.2 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import A2CPolicy
from tianshou.env import VectorEnv
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net, Actor, Critic
else: # pytest
from test.discrete.net import Net, Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--repeat-per-collect', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=2)
parser.add_argument('--training-num', type=int, default=32)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# a2c special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.001)
parser.add_argument('--max-grad-norm', type=float, default=None)
parser.add_argument('--gae-lambda', type=float, default=1.)
args = parser.parse_known_args()[0]
return args
def test_a2c(args=get_args()):
torch.set_num_threads(1) # for poor CPU
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
optim = torch.optim.Adam(list(
actor.parameters()) + list(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
policy = A2CPolicy(
actor, critic, optim, dist, args.gamma, gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef, ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'a2c')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_a2c()