Tianshou/test/discrete/test_pg.py
Trinkle23897 680fc0ffbe gae
2020-04-14 21:11:06 +08:00

160 lines
5.4 KiB
Python

import os
import gym
import time
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import VectorEnv
from tianshou.policy import PGPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Batch, Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net
else: # pytest
from test.discrete.net import Net
def compute_return_base(batch, aa=None, bb=None, gamma=0.1):
returns = np.zeros_like(batch.rew)
last = 0
for i in reversed(range(len(batch.rew))):
returns[i] = batch.rew[i]
if not batch.done[i]:
returns[i] += last * gamma
last = returns[i]
batch.returns = returns
return batch
def test_fn(size=2560):
policy = PGPolicy(None, None, None, discount_factor=0.1)
buf = ReplayBuffer(100)
buf.add(1, 1, 1, 1, 1)
fn = policy.process_fn
# fn = compute_return_base
batch = Batch(
done=np.array([1, 0, 0, 1, 0, 1, 0, 1.]),
rew=np.array([0, 1, 2, 3, 4, 5, 6, 7.]),
)
batch = fn(batch, buf, 0)
ans = np.array([0, 1.23, 2.3, 3, 4.5, 5, 6.7, 7])
assert abs(batch.returns - ans).sum() <= 1e-5
batch = Batch(
done=np.array([0, 1, 0, 1, 0, 1, 0.]),
rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
)
batch = fn(batch, buf, 0)
ans = np.array([7.6, 6, 1.2, 2, 3.4, 4, 5])
assert abs(batch.returns - ans).sum() <= 1e-5
batch = Batch(
done=np.array([0, 1, 0, 1, 0, 0, 1.]),
rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
)
batch = fn(batch, buf, 0)
ans = np.array([7.6, 6, 1.2, 2, 3.45, 4.5, 5])
assert abs(batch.returns - ans).sum() <= 1e-5
if __name__ == '__main__':
batch = Batch(
done=np.random.randint(100, size=size) == 0,
rew=np.random.random(size),
)
cnt = 3000
t = time.time()
for _ in range(cnt):
compute_return_base(batch)
print(f'vanilla: {(time.time() - t) / cnt}')
t = time.time()
for _ in range(cnt):
policy.process_fn(batch, buf, 0)
print(f'policy: {(time.time() - t) / cnt}')
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--repeat-per-collect', type=int, default=2)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_pg(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(
args.layer_num, args.state_shape, args.action_shape,
device=args.device, softmax=True)
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PGPolicy(net, optim, dist, args.gamma)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'pg')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_fn()
test_pg()