Tianshou/examples/atari/atari_callbacks.py
Dominik Jain a8a367c42d Support IQN in high-level API
* Add example atari_iqn_hl
* Factor out trainer callbacks to new module atari_callbacks
* Extract base class for DQN-based agent factories
* Improved module factory interface design, achieving higher generality
2023-10-18 20:44:17 +02:00

34 lines
1.2 KiB
Python

from tianshou.highlevel.trainer import (
TrainerEpochCallbackTest,
TrainerEpochCallbackTrain,
TrainingContext,
)
from tianshou.policy import DQNPolicy
class TestEpochCallbackDQNSetEps(TrainerEpochCallbackTest):
def __init__(self, eps_test: float):
self.eps_test = eps_test
def callback(self, epoch: int, env_step: int, context: TrainingContext) -> None:
policy: DQNPolicy = context.policy
policy.set_eps(self.eps_test)
class TrainEpochCallbackNatureDQNEpsLinearDecay(TrainerEpochCallbackTrain):
def __init__(self, eps_train: float, eps_train_final: float):
self.eps_train = eps_train
self.eps_train_final = eps_train_final
def callback(self, epoch: int, env_step: int, context: TrainingContext) -> None:
policy: DQNPolicy = context.policy
logger = context.logger.logger
# nature DQN setting, linear decay in the first 1M steps
if env_step <= 1e6:
eps = self.eps_train - env_step / 1e6 * (self.eps_train - self.eps_train_final)
else:
eps = self.eps_train_final
policy.set_eps(eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})