125 lines
4.7 KiB
Python
125 lines
4.7 KiB
Python
import argparse
|
|
import os
|
|
import pickle
|
|
from test.offline.gather_cartpole_data import expert_file_name, gather_data
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import BasePolicy, DiscreteCQLPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--eps-test", type=float, default=0.001)
|
|
parser.add_argument("--lr", type=float, default=3e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--num-quantiles", type=int, default=200)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=500)
|
|
parser.add_argument("--min-q-weight", type=float, default=10.0)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--update-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--batch-size", type=int, default=32)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64])
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_discrete_cql(args: argparse.Namespace = get_args()) -> None:
|
|
# envs
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Discrete)
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 170}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
softmax=False,
|
|
num_atoms=args.num_quantiles,
|
|
)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
|
|
policy: DiscreteCQLPolicy = DiscreteCQLPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
num_quantiles=args.num_quantiles,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
min_q_weight=args.min_q_weight,
|
|
).to(args.device)
|
|
# buffer
|
|
buffer: VectorReplayBuffer | PrioritizedVectorReplayBuffer
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
|
|
# collector
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
log_path = os.path.join(args.logdir, args.task, "discrete_cql")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
result = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.update_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
|
|
assert stop_fn(result.best_reward)
|