Dominik Jain 367778d37f Improve high-level policy parametrisation
Policy objects are now parametrised by converting the parameter
dataclass instances to kwargs, using some injectable conversions
along the way
2023-10-18 20:44:16 +02:00

43 lines
1.2 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Iterable
from typing import Any
import torch
from torch import Tensor
from torch.optim import Adam
TParams = Iterable[Tensor] | Iterable[dict[str, Any]]
class OptimizerFactory(ABC):
@abstractmethod
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
pass
class TorchOptimizerFactory(OptimizerFactory):
def __init__(self, optim_class: Any, **kwargs):
self.optim_class = optim_class
self.kwargs = kwargs
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
class AdamOptimizerFactory(OptimizerFactory):
def __init__(self, betas=(0.9, 0.999), eps=1e-08, weight_decay=0):
self.weight_decay = weight_decay
self.eps = eps
self.betas = betas
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
return Adam(
module.parameters(),
lr=lr,
betas=self.betas,
eps=self.eps,
weight_decay=self.weight_decay,
)