Tianshou/examples/atari/atari_ppo_hl.py
Dominik Jain 6b6d9ea609 Add support for discrete PPO
* Refactored module `module` (split into submodules)
* Basic support for discrete environments
* Implement Atari env. factory
* Implement DQN-based actor factory
* Implement notion of reusing agent preprocessing network for critic
* Add example atari_ppo_hl
2023-10-18 20:44:16 +02:00

118 lines
3.6 KiB
Python

#!/usr/bin/env python3
import datetime
import os
from collections.abc import Sequence
from jsonargparse import CLI
from examples.atari.atari_network import (
ActorFactoryAtariDQN,
FeatureNetFactoryDQN,
)
from examples.atari.atari_wrapper import AtariEnvFactory
from tianshou.highlevel.config import RLSamplingConfig
from tianshou.highlevel.experiment import (
PPOExperimentBuilder,
RLExperimentConfig,
)
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
from tianshou.highlevel.params.policy_params import PPOParams
from tianshou.highlevel.params.policy_wrapper import (
PolicyWrapperFactoryIntrinsicCuriosity,
)
def main(
experiment_config: RLExperimentConfig,
task: str = "PongNoFrameskip-v4",
scale_obs: bool = True,
buffer_size: int = 100000,
lr: float = 2.5e-4,
gamma: float = 0.99,
epoch: int = 100,
step_per_epoch: int = 100000,
step_per_collect: int = 1000,
repeat_per_collect: int = 4,
batch_size: int = 256,
hidden_sizes: int | Sequence[int] = 512,
training_num: int = 10,
test_num: int = 10,
rew_norm: bool = False,
vf_coef: float = 0.25,
ent_coef: float = 0.01,
gae_lambda: float = 0.95,
lr_decay: bool = True,
max_grad_norm: float = 0.5,
eps_clip: float = 0.1,
dual_clip: float | None = None,
value_clip: bool = True,
norm_adv: bool = True,
recompute_adv: bool = False,
frames_stack: int = 4,
save_buffer_name: str | None = None, # TODO add support in high-level API?
icm_lr_scale: float = 0.0,
icm_reward_scale: float = 0.01,
icm_forward_loss_weight: float = 0.2,
):
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
log_name = os.path.join(task, "ppo", str(experiment_config.seed), now)
sampling_config = RLSamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
batch_size=batch_size,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
step_per_collect=step_per_collect,
repeat_per_collect=repeat_per_collect,
replay_buffer_stack_num=frames_stack,
replay_buffer_ignore_obs_next=True,
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(task, experiment_config.seed, sampling_config, frames_stack)
builder = (
PPOExperimentBuilder(experiment_config, env_factory, sampling_config)
.with_ppo_params(
PPOParams(
discount_factor=gamma,
gae_lambda=gae_lambda,
reward_normalization=rew_norm,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
value_clip=value_clip,
advantage_normalization=norm_adv,
eps_clip=eps_clip,
dual_clip=dual_clip,
recompute_advantage=recompute_adv,
lr=lr,
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
if lr_decay
else None,
),
)
.with_actor_factory(ActorFactoryAtariDQN(hidden_sizes, scale_obs))
.with_critic_factory_use_actor()
)
if icm_lr_scale > 0:
builder.with_policy_wrapper_factory(
PolicyWrapperFactoryIntrinsicCuriosity(
FeatureNetFactoryDQN(),
[hidden_sizes],
lr,
icm_lr_scale,
icm_reward_scale,
icm_forward_loss_weight,
),
)
experiment = builder.build()
experiment.run(log_name)
if __name__ == "__main__":
CLI(main)