Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
260 lines
9.5 KiB
Python
260 lines
9.5 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pprint
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from atari_network import Rainbow
|
|
from atari_wrapper import make_atari_env
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
|
|
from tianshou.policy import RainbowPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger, WandbLogger
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--scale-obs", type=int, default=0)
|
|
parser.add_argument("--eps-test", type=float, default=0.005)
|
|
parser.add_argument("--eps-train", type=float, default=1.0)
|
|
parser.add_argument("--eps-train-final", type=float, default=0.05)
|
|
parser.add_argument("--buffer-size", type=int, default=100000)
|
|
parser.add_argument("--lr", type=float, default=0.0000625)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--num-atoms", type=int, default=51)
|
|
parser.add_argument("--v-min", type=float, default=-10.0)
|
|
parser.add_argument("--v-max", type=float, default=10.0)
|
|
parser.add_argument("--noisy-std", type=float, default=0.1)
|
|
parser.add_argument("--no-dueling", action="store_true", default=False)
|
|
parser.add_argument("--no-noisy", action="store_true", default=False)
|
|
parser.add_argument("--no-priority", action="store_true", default=False)
|
|
parser.add_argument("--alpha", type=float, default=0.5)
|
|
parser.add_argument("--beta", type=float, default=0.4)
|
|
parser.add_argument("--beta-final", type=float, default=1.0)
|
|
parser.add_argument("--beta-anneal-step", type=int, default=5000000)
|
|
parser.add_argument("--no-weight-norm", action="store_true", default=False)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=500)
|
|
parser.add_argument("--epoch", type=int, default=100)
|
|
parser.add_argument("--step-per-epoch", type=int, default=100000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=32)
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--frames-stack", type=int, default=4)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument("--resume-id", type=str, default=None)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
)
|
|
parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--save-buffer-name", type=str, default=None)
|
|
return parser.parse_args()
|
|
|
|
|
|
def test_rainbow(args=get_args()):
|
|
env, train_envs, test_envs = make_atari_env(
|
|
args.task,
|
|
args.seed,
|
|
args.training_num,
|
|
args.test_num,
|
|
scale=args.scale_obs,
|
|
frame_stack=args.frames_stack,
|
|
)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# should be N_FRAMES x H x W
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# define model
|
|
net = Rainbow(
|
|
*args.state_shape,
|
|
args.action_shape,
|
|
args.num_atoms,
|
|
args.noisy_std,
|
|
args.device,
|
|
is_dueling=not args.no_dueling,
|
|
is_noisy=not args.no_noisy,
|
|
)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
# define policy
|
|
policy = RainbowPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
discount_factor=args.gamma,
|
|
action_space=env.action_space,
|
|
num_atoms=args.num_atoms,
|
|
v_min=args.v_min,
|
|
v_max=args.v_max,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
).to(args.device)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
# replay buffer: `save_last_obs` and `stack_num` can be removed together
|
|
# when you have enough RAM
|
|
if args.no_priority:
|
|
buffer = VectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
)
|
|
else:
|
|
buffer = PrioritizedVectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(train_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
alpha=args.alpha,
|
|
beta=args.beta,
|
|
weight_norm=not args.no_weight_norm,
|
|
)
|
|
# collector
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
# log
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
args.algo_name = "rainbow"
|
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
|
log_path = os.path.join(args.logdir, log_name)
|
|
|
|
# logger
|
|
if args.logger == "wandb":
|
|
logger = WandbLogger(
|
|
save_interval=1,
|
|
name=log_name.replace(os.path.sep, "__"),
|
|
run_id=args.resume_id,
|
|
config=args,
|
|
project=args.wandb_project,
|
|
)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
if args.logger == "tensorboard":
|
|
logger = TensorboardLogger(writer)
|
|
else: # wandb
|
|
logger.load(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
if env.spec.reward_threshold:
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
if "Pong" in args.task:
|
|
return mean_rewards >= 20
|
|
return False
|
|
|
|
def train_fn(epoch, env_step):
|
|
# nature DQN setting, linear decay in the first 1M steps
|
|
if env_step <= 1e6:
|
|
eps = args.eps_train - env_step / 1e6 * (args.eps_train - args.eps_train_final)
|
|
else:
|
|
eps = args.eps_train_final
|
|
policy.set_eps(eps)
|
|
if env_step % 1000 == 0:
|
|
logger.write("train/env_step", env_step, {"train/eps": eps})
|
|
if not args.no_priority:
|
|
if env_step <= args.beta_anneal_step:
|
|
beta = args.beta - env_step / args.beta_anneal_step * (args.beta - args.beta_final)
|
|
else:
|
|
beta = args.beta_final
|
|
buffer.set_beta(beta)
|
|
if env_step % 1000 == 0:
|
|
logger.write("train/env_step", env_step, {"train/beta": beta})
|
|
|
|
def test_fn(epoch, env_step):
|
|
policy.set_eps(args.eps_test)
|
|
|
|
# watch agent's performance
|
|
def watch():
|
|
print("Setup test envs ...")
|
|
policy.eval()
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
if args.save_buffer_name:
|
|
print(f"Generate buffer with size {args.buffer_size}")
|
|
buffer = PrioritizedVectorReplayBuffer(
|
|
args.buffer_size,
|
|
buffer_num=len(test_envs),
|
|
ignore_obs_next=True,
|
|
save_only_last_obs=True,
|
|
stack_num=args.frames_stack,
|
|
alpha=args.alpha,
|
|
beta=args.beta,
|
|
)
|
|
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
|
|
result = collector.collect(n_step=args.buffer_size)
|
|
print(f"Save buffer into {args.save_buffer_name}")
|
|
# Unfortunately, pickle will cause oom with 1M buffer size
|
|
buffer.save_hdf5(args.save_buffer_name)
|
|
else:
|
|
print("Testing agent ...")
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
rew = result["rews"].mean()
|
|
print(f"Mean reward (over {result['n/ep']} episodes): {rew}")
|
|
|
|
if args.watch:
|
|
watch()
|
|
sys.exit(0)
|
|
|
|
# test train_collector and start filling replay buffer
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
test_in_train=False,
|
|
).run()
|
|
|
|
pprint.pprint(result)
|
|
watch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_rainbow(get_args())
|