Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
196 lines
6.8 KiB
Python
196 lines
6.8 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import SubprocVectorEnv
|
|
from tianshou.policy import SACPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="BipedalWalkerHardcore-v3")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--buffer-size", type=int, default=1000000)
|
|
parser.add_argument("--actor-lr", type=float, default=3e-4)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--alpha", type=float, default=0.1)
|
|
parser.add_argument("--auto-alpha", type=int, default=1)
|
|
parser.add_argument("--alpha-lr", type=float, default=3e-4)
|
|
parser.add_argument("--epoch", type=int, default=100)
|
|
parser.add_argument("--step-per-epoch", type=int, default=100000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=128)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--n-step", type=int, default=4)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
return parser.parse_args()
|
|
|
|
|
|
class Wrapper(gym.Wrapper):
|
|
"""Env wrapper for reward scale, action repeat and removing done penalty."""
|
|
|
|
def __init__(self, env, action_repeat=3, reward_scale=5, rm_done=True):
|
|
super().__init__(env)
|
|
self.action_repeat = action_repeat
|
|
self.reward_scale = reward_scale
|
|
self.rm_done = rm_done
|
|
|
|
def step(self, action):
|
|
rew_sum = 0.0
|
|
for _ in range(self.action_repeat):
|
|
obs, rew, done, info = self.env.step(action)
|
|
# remove done reward penalty
|
|
if not done or not self.rm_done:
|
|
rew_sum = rew_sum + rew
|
|
if done:
|
|
break
|
|
# scale reward
|
|
return obs, self.reward_scale * rew_sum, done, info
|
|
|
|
|
|
def test_sac_bipedal(args=get_args()):
|
|
env = Wrapper(gym.make(args.task))
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0]
|
|
|
|
train_envs = SubprocVectorEnv(
|
|
[lambda: Wrapper(gym.make(args.task)) for _ in range(args.training_num)],
|
|
)
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = SubprocVectorEnv(
|
|
[
|
|
lambda: Wrapper(gym.make(args.task), reward_scale=1, rm_done=False)
|
|
for _ in range(args.test_num)
|
|
],
|
|
)
|
|
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = ActorProb(net_a, args.action_shape, device=args.device, unbounded=True).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
net_c1 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
|
|
net_c2 = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
if args.auto_alpha:
|
|
target_entropy = -np.prod(env.action_space.shape)
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy = SACPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic1,
|
|
critic_optim=critic1_optim,
|
|
critic2=critic2,
|
|
critic2_optim=critic2_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
estimation_step=args.n_step,
|
|
action_space=env.action_space,
|
|
)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# train_collector.collect(n_step=args.buffer_size)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "sac")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
test_in_train=False,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_sac_bipedal()
|