Tianshou/test/discrete/test_ppo.py
Trinkle23897 6bf1ea644d fix ppo
2020-04-19 14:30:42 +08:00

123 lines
4.7 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import VectorEnv
from tianshou.policy import PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
if __name__ == '__main__':
from net import Net, Actor, Critic
else: # pytest
from test.discrete.net import Net, Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=2000)
parser.add_argument('--collect-per-step', type=int, default=20)
parser.add_argument('--repeat-per-collect', type=int, default=2)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=20)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--gae-lambda', type=float, default=1)
parser.add_argument('--rew-norm', type=bool, default=True)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=bool, default=True)
args = parser.parse_known_args()[0]
return args
def test_ppo(args=get_args()):
torch.set_num_threads(1) # for poor CPU
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
optim = torch.optim.Adam(list(
actor.parameters()) + list(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor, critic, optim, dist, args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
action_range=None,
gae_lambda=args.gae_lambda,
reward_normalization=args.rew_norm,
dual_clip=args.dual_clip,
value_clip=args.value_clip)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'ppo')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_ppo()