Tianshou/test/base/test_env_finite.py
Markus Krimmel 6c6c872523
Gymnasium Integration (#789)
Changes:
- Disclaimer in README
- Replaced all occurences of Gym with Gymnasium
- Removed code that is now dead since we no longer need to support the
old step API
- Updated type hints to only allow new step API
- Increased required version of envpool to support Gymnasium
- Increased required version of PettingZoo to support Gymnasium
- Updated `PettingZooEnv` to only use the new step API, removed hack to
also support old API
- I had to add some `# type: ignore` comments, due to new type hinting
in Gymnasium. I'm not that familiar with type hinting but I believe that
the issue is on the Gymnasium side and we are looking into it.
- Had to update `MyTestEnv` to support `options` kwarg
- Skip NNI tests because they still use OpenAI Gym
- Also allow `PettingZooEnv` in vector environment
- Updated doc page about ReplayBuffer to also talk about terminated and
truncated flags.

Still need to do: 
- Update the Jupyter notebooks in docs
- Check the entire code base for more dead code (from compatibility
stuff)
- Check the reset functions of all environments/wrappers in code base to
make sure they use the `options` kwarg
- Someone might want to check test_env_finite.py
- Is it okay to allow `PettingZooEnv` in vector environments? Might need
to update docs?
2023-02-03 11:57:27 -08:00

229 lines
6.7 KiB
Python

# see issue #322 for detail
import copy
from collections import Counter
import gymnasium as gym
import numpy as np
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tianshou.data import Batch, Collector
from tianshou.env import BaseVectorEnv, DummyVectorEnv, SubprocVectorEnv
from tianshou.policy import BasePolicy
class DummyDataset(Dataset):
def __init__(self, length):
self.length = length
self.episodes = [3 * i % 5 + 1 for i in range(self.length)]
def __getitem__(self, index):
assert 0 <= index < self.length
return index, self.episodes[index]
def __len__(self):
return self.length
class FiniteEnv(gym.Env):
def __init__(self, dataset, num_replicas, rank):
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.loader = DataLoader(
dataset,
sampler=DistributedSampler(dataset, num_replicas, rank),
batch_size=None
)
self.iterator = None
def reset(self):
if self.iterator is None:
self.iterator = iter(self.loader)
try:
self.current_sample, self.step_count = next(self.iterator)
self.current_step = 0
return self.current_sample, {}
except StopIteration:
self.iterator = None
return None, {}
def step(self, action):
self.current_step += 1
assert self.current_step <= self.step_count
return 0, 1.0, self.current_step >= self.step_count, False, \
{'sample': self.current_sample, 'action': action, 'metric': 2.0}
class FiniteVectorEnv(BaseVectorEnv):
def __init__(self, env_fns, **kwargs):
super().__init__(env_fns, **kwargs)
self._alive_env_ids = set()
self._reset_alive_envs()
self._default_obs = self._default_info = None
def _reset_alive_envs(self):
if not self._alive_env_ids:
# starting or running out
self._alive_env_ids = set(range(self.env_num))
# to workaround with tianshou's buffer and batch
def _set_default_obs(self, obs):
if obs is not None and self._default_obs is None:
self._default_obs = copy.deepcopy(obs)
def _set_default_info(self, info):
if info is not None and self._default_info is None:
self._default_info = copy.deepcopy(info)
def _get_default_obs(self):
return copy.deepcopy(self._default_obs)
def _get_default_info(self):
return copy.deepcopy(self._default_info)
# END
def reset(self, id=None):
id = self._wrap_id(id)
self._reset_alive_envs()
# ask super to reset alive envs and remap to current index
request_id = list(filter(lambda i: i in self._alive_env_ids, id))
obs = [None] * len(id)
infos = [None] * len(id)
id2idx = {i: k for k, i in enumerate(id)}
if request_id:
for k, o, info in zip(request_id, *super().reset(request_id)):
obs[id2idx[k]] = o
infos[id2idx[k]] = info
for i, o in zip(id, obs):
if o is None and i in self._alive_env_ids:
self._alive_env_ids.remove(i)
# fill empty observation with default(fake) observation
for o in obs:
self._set_default_obs(o)
for i in range(len(obs)):
if obs[i] is None:
obs[i] = self._get_default_obs()
if infos[i] is None:
infos[i] = self._get_default_info()
if not self._alive_env_ids:
self.reset()
raise StopIteration
return np.stack(obs), infos
def step(self, action, id=None):
id = self._wrap_id(id)
id2idx = {i: k for k, i in enumerate(id)}
request_id = list(filter(lambda i: i in self._alive_env_ids, id))
result = [[None, 0., False, False, None] for _ in range(len(id))]
# ask super to step alive envs and remap to current index
if request_id:
valid_act = np.stack([action[id2idx[i]] for i in request_id])
for i, r in zip(request_id, zip(*super().step(valid_act, request_id))):
result[id2idx[i]] = r
# logging
for i, r in zip(id, result):
if i in self._alive_env_ids:
self.tracker.log(*r)
# fill empty observation/info with default(fake)
for _, __, ___, ____, i in result:
self._set_default_info(i)
for i in range(len(result)):
if result[i][0] is None:
result[i][0] = self._get_default_obs()
if result[i][-1] is None:
result[i][-1] = self._get_default_info()
return list(map(np.stack, zip(*result)))
class FiniteDummyVectorEnv(FiniteVectorEnv, DummyVectorEnv):
pass
class FiniteSubprocVectorEnv(FiniteVectorEnv, SubprocVectorEnv):
pass
class AnyPolicy(BasePolicy):
def forward(self, batch, state=None):
return Batch(act=np.stack([1] * len(batch)))
def learn(self, batch):
pass
def _finite_env_factory(dataset, num_replicas, rank):
return lambda: FiniteEnv(dataset, num_replicas, rank)
class MetricTracker:
def __init__(self):
self.counter = Counter()
self.finished = set()
def log(self, obs, rew, terminated, truncated, info):
assert rew == 1.
done = terminated or truncated
index = info['sample']
if done:
assert index not in self.finished
self.finished.add(index)
self.counter[index] += 1
def validate(self):
assert len(self.finished) == 100
for k, v in self.counter.items():
assert v == k * 3 % 5 + 1
def test_finite_dummy_vector_env():
dataset = DummyDataset(100)
envs = FiniteSubprocVectorEnv(
[_finite_env_factory(dataset, 5, i) for i in range(5)]
)
policy = AnyPolicy()
test_collector = Collector(policy, envs, exploration_noise=True)
for _ in range(3):
envs.tracker = MetricTracker()
try:
test_collector.collect(n_step=10**18)
except StopIteration:
envs.tracker.validate()
def test_finite_subproc_vector_env():
dataset = DummyDataset(100)
envs = FiniteSubprocVectorEnv(
[_finite_env_factory(dataset, 5, i) for i in range(5)]
)
policy = AnyPolicy()
test_collector = Collector(policy, envs, exploration_noise=True)
for _ in range(3):
envs.tracker = MetricTracker()
try:
test_collector.collect(n_step=10**18)
except StopIteration:
envs.tracker.validate()
if __name__ == '__main__':
test_finite_dummy_vector_env()
test_finite_subproc_vector_env()