Preparation for #914 and #920 Changes formatting to ruff and black. Remove python 3.8 ## Additional Changes - Removed flake8 dependencies - Adjusted pre-commit. Now CI and Make use pre-commit, reducing the duplication of linting calls - Removed check-docstyle option (ruff is doing that) - Merged format and lint. In CI the format-lint step fails if any changes are done, so it fulfills the lint functionality. --------- Co-authored-by: Jiayi Weng <jiayi@openai.com>
99 lines
3.5 KiB
Python
Executable File
99 lines
3.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import re
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from tabulate import tabulate
|
|
from tools import csv2numpy, find_all_files, group_files
|
|
|
|
|
|
def numerical_analysis(root_dir, xlim, norm=False):
|
|
file_pattern = re.compile(r".*/test_reward_\d+seeds.csv$")
|
|
norm_group_pattern = re.compile(r"(/|^)\w+?\-v(\d|$)")
|
|
output_group_pattern = re.compile(r".*?(?=(/|^)\w+?\-v\d)")
|
|
csv_files = find_all_files(root_dir, file_pattern)
|
|
norm_group = group_files(csv_files, norm_group_pattern)
|
|
output_group = group_files(csv_files, output_group_pattern)
|
|
# calculate numerical outcome for each csv_file (y/std integration max_y, final_y)
|
|
results = defaultdict(list)
|
|
for f in csv_files:
|
|
result = csv2numpy(f)
|
|
if norm:
|
|
result = np.stack(
|
|
[
|
|
result["env_step"],
|
|
result["reward"] - result["reward"][0],
|
|
result["reward:shaded"],
|
|
],
|
|
)
|
|
else:
|
|
result = np.stack([result["env_step"], result["reward"], result["reward:shaded"]])
|
|
|
|
if result[0, -1] < xlim:
|
|
continue
|
|
|
|
final_rew = np.interp(xlim, result[0], result[1])
|
|
final_rew_std = np.interp(xlim, result[0], result[2])
|
|
result = result[:, result[0] <= xlim]
|
|
|
|
if len(result) == 0:
|
|
continue
|
|
|
|
if result[0, -1] < xlim:
|
|
last_line = np.array([xlim, final_rew, final_rew_std]).reshape(3, 1)
|
|
result = np.concatenate([result, last_line], axis=-1)
|
|
|
|
max_id = np.argmax(result[1])
|
|
results["name"].append(f)
|
|
results["final_reward"].append(result[1, -1])
|
|
results["final_reward_std"].append(result[2, -1])
|
|
results["max_reward"].append(result[1, max_id])
|
|
results["max_std"].append(result[2, max_id])
|
|
results["reward_integration"].append(np.trapz(result[1], x=result[0]))
|
|
results["reward_std_integration"].append(np.trapz(result[2], x=result[0]))
|
|
|
|
results = {k: np.array(v) for k, v in results.items()}
|
|
print(tabulate(results, headers="keys"))
|
|
|
|
if norm:
|
|
# calculate normalized numerical outcome for each csv_file group
|
|
for _, fs in norm_group.items():
|
|
mask = np.isin(results["name"], fs)
|
|
for k, v in results.items():
|
|
if k == "name":
|
|
continue
|
|
v[mask] = v[mask] / max(v[mask])
|
|
# Add all numerical results for each outcome group
|
|
group_results = defaultdict(list)
|
|
for g, fs in output_group.items():
|
|
group_results["name"].append(g)
|
|
mask = np.isin(results["name"], fs)
|
|
group_results["num"].append(sum(mask))
|
|
for k in results:
|
|
if k == "name":
|
|
continue
|
|
group_results[k + ":norm"].append(results[k][mask].mean())
|
|
# print all outputs for each csv_file and each outcome group
|
|
print()
|
|
print(tabulate(group_results, headers="keys"))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--xlim",
|
|
type=int,
|
|
default=1000000,
|
|
help="x-axis limitation (default: 1000000)",
|
|
)
|
|
parser.add_argument("--root-dir", type=str)
|
|
parser.add_argument(
|
|
"--norm",
|
|
action="store_true",
|
|
help="Normalize all results according to environment.",
|
|
)
|
|
args = parser.parse_args()
|
|
numerical_analysis(args.root_dir, args.xlim, norm=args.norm)
|